Reading reliability analysis and modeling in 1S1R devices based on Phase-Change Memory and Ovonic Threshold Switching selector integrated in a double-patterned self-aligned structure

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Renzo Antonelli , C. De Camaret , G. Bourgeois , Z. Saghi , T. Monniez , S. Martin , N. Castellani , M. Bernard , L. Fellouh , A. Salvi , S. Gout , F. Andrieu , A. Souifi , G. Navarro
{"title":"Reading reliability analysis and modeling in 1S1R devices based on Phase-Change Memory and Ovonic Threshold Switching selector integrated in a double-patterned self-aligned structure","authors":"Renzo Antonelli ,&nbsp;C. De Camaret ,&nbsp;G. Bourgeois ,&nbsp;Z. Saghi ,&nbsp;T. Monniez ,&nbsp;S. Martin ,&nbsp;N. Castellani ,&nbsp;M. Bernard ,&nbsp;L. Fellouh ,&nbsp;A. Salvi ,&nbsp;S. Gout ,&nbsp;F. Andrieu ,&nbsp;A. Souifi ,&nbsp;G. Navarro","doi":"10.1016/j.microrel.2025.115801","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact and the reliability of the reading operation in one-selector one-resistor (1S1R) memory devices based on an Ovonic Threshold Switching (OTS) selector and Phase Change Memory (PCM) co-integrated in a Double-Patterned Self-Aligned (DPSA) structure targeting Crossbar applications. Upon reading, the SET state can face a threshold voltage (V<sub>th</sub>) increase of more than 20% depending on the reading current and on the number of reading operations, which can lead to a bit-flip soft failure. We isolate the contributions to this increase coming respectively from the OTS and the PCM, providing an assessment protocol for the reading reliability. We model the evolution of the V<sub>th</sub>, which allow us to extract the performance metrics such as the read window margin (RWM), the reading-cycles-to-failure, and the maximum Crossbar array size. Finally, we present the SET and RESET threshold voltage distributions before and after the reading operation.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"172 ","pages":"Article 115801"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425002148","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact and the reliability of the reading operation in one-selector one-resistor (1S1R) memory devices based on an Ovonic Threshold Switching (OTS) selector and Phase Change Memory (PCM) co-integrated in a Double-Patterned Self-Aligned (DPSA) structure targeting Crossbar applications. Upon reading, the SET state can face a threshold voltage (Vth) increase of more than 20% depending on the reading current and on the number of reading operations, which can lead to a bit-flip soft failure. We isolate the contributions to this increase coming respectively from the OTS and the PCM, providing an assessment protocol for the reading reliability. We model the evolution of the Vth, which allow us to extract the performance metrics such as the read window margin (RWM), the reading-cycles-to-failure, and the maximum Crossbar array size. Finally, we present the SET and RESET threshold voltage distributions before and after the reading operation.
基于相位存储器和Ovonic阈值开关选择器集成在双模式自对准结构中的1S1R器件读取可靠性分析与建模
本文研究了基于Ovonic阈值开关(OTS)选择器和相变存储器(PCM)在双模式自对齐(DPSA)结构中共集成的单选择器一电阻(1S1R)存储器件中读取操作的影响和可靠性。在读取时,根据读取电流和读取操作的次数,SET状态可能面临阈值电压(Vth)增加20%以上,这可能导致位翻转软故障。我们分别从OTS和PCM中分离出对这一增长的贡献,为读数可靠性提供了一个评估方案。我们对第v条的演变进行建模,这使我们能够提取性能指标,如读取窗口裕度(RWM)、读取周期到故障和最大Crossbar数组大小。最后,我们给出了读取操作前后的SET和RESET阈值电压分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信