Universal machine learning interatomic potentials are ready for phonons

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Antoine Loew, Dewen Sun, Hai-Chen Wang, Silvana Botti, Miguel A. L. Marques
{"title":"Universal machine learning interatomic potentials are ready for phonons","authors":"Antoine Loew, Dewen Sun, Hai-Chen Wang, Silvana Botti, Miguel A. L. Marques","doi":"10.1038/s41524-025-01650-1","DOIUrl":null,"url":null,"abstract":"<p>There has been an ongoing race for the past several years to develop the best universal machine learning interatomic potential. This progress has led to increasingly accurate models for predicting energy, forces, and stresses, combining innovative architectures with big data. Here, we benchmark these models on their ability to predict harmonic phonon properties, which are critical for understanding the vibrational and thermal behavior of materials. Using around 10 000 ab initio phonon calculations, we evaluate model performance across various phonon-related parameters to test the universal applicability of these models. The results reveal that some models achieve high accuracy in predicting harmonic phonon properties. However, others still exhibit substantial inaccuracies, even if they excel in the prediction of the energy and the forces for materials close to dynamical equilibrium. These findings highlight the importance of considering phonon-related properties in the development of universal machine learning interatomic potentials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01650-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There has been an ongoing race for the past several years to develop the best universal machine learning interatomic potential. This progress has led to increasingly accurate models for predicting energy, forces, and stresses, combining innovative architectures with big data. Here, we benchmark these models on their ability to predict harmonic phonon properties, which are critical for understanding the vibrational and thermal behavior of materials. Using around 10 000 ab initio phonon calculations, we evaluate model performance across various phonon-related parameters to test the universal applicability of these models. The results reveal that some models achieve high accuracy in predicting harmonic phonon properties. However, others still exhibit substantial inaccuracies, even if they excel in the prediction of the energy and the forces for materials close to dynamical equilibrium. These findings highlight the importance of considering phonon-related properties in the development of universal machine learning interatomic potentials.

Abstract Image

通用机器学习原子间势已经为声子准备好了
在过去的几年里,一直在进行一场竞赛,以开发最好的通用机器学习原子间的潜力。这一进展使得预测能量、力和应力的模型越来越精确,将创新架构与大数据相结合。在这里,我们对这些模型进行基准测试,以预测谐波声子特性的能力,这对于理解材料的振动和热行为至关重要。使用大约10,000个从头开始声子计算,我们评估了各种声子相关参数的模型性能,以测试这些模型的普遍适用性。结果表明,一些模型在预测谐波声子性质方面具有较高的精度。然而,另一些方法仍然表现出很大的不准确性,即使它们在预测接近动态平衡的物质的能量和力方面表现出色。这些发现强调了在通用机器学习原子间势的发展中考虑声子相关特性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信