Chen Wang, Anthony D. Rish, Emily G. Armbruster, Jiale Xie, Anna B. Loveland, Zhangfei Shen, Bradley Gu, Andrei A. Korostelev, Joe Pogliano, Tian-Min Fu
{"title":"Disassembly activates Retron-Septu for antiphage defense","authors":"Chen Wang, Anthony D. Rish, Emily G. Armbruster, Jiale Xie, Anna B. Loveland, Zhangfei Shen, Bradley Gu, Andrei A. Korostelev, Joe Pogliano, Tian-Min Fu","doi":"10.1126/science.adv3344","DOIUrl":null,"url":null,"abstract":"Retrons are antiphage defense systems that produce multicopy single-stranded DNA (msDNA) and hold promises for genome engineering. However, the mechanisms of defense remain unclear. The Retron-Septu system uniquely integrates retron and Septu antiphage defenses. Cryo-electron microscopy structures reveal asymmetric nucleoprotein complexes comprising a reverse transcriptase (RT), msDNA (a hybrid of msdDNA and msrRNA), and two PtuAB copies. msdDNA and msrRNA are essential for assembling this complex, with msrRNA adopting a conserved lariat-like structure that regulates reverse transcription. Notably, the assembled Retron-Septu complex is inactive, with msdDNA occupying the PtuA DNA-binding site. Activation occurs upon disassembly, releasing PtuAB, which degrades single-stranded DNA to restrict phage replication. This “arrest-and-release” mechanism underscores the dynamic regulatory roles of msDNA, advancing our understanding of antiphage defense strategies.","PeriodicalId":21678,"journal":{"name":"Science","volume":"12 1","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adv3344","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Retrons are antiphage defense systems that produce multicopy single-stranded DNA (msDNA) and hold promises for genome engineering. However, the mechanisms of defense remain unclear. The Retron-Septu system uniquely integrates retron and Septu antiphage defenses. Cryo-electron microscopy structures reveal asymmetric nucleoprotein complexes comprising a reverse transcriptase (RT), msDNA (a hybrid of msdDNA and msrRNA), and two PtuAB copies. msdDNA and msrRNA are essential for assembling this complex, with msrRNA adopting a conserved lariat-like structure that regulates reverse transcription. Notably, the assembled Retron-Septu complex is inactive, with msdDNA occupying the PtuA DNA-binding site. Activation occurs upon disassembly, releasing PtuAB, which degrades single-stranded DNA to restrict phage replication. This “arrest-and-release” mechanism underscores the dynamic regulatory roles of msDNA, advancing our understanding of antiphage defense strategies.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.