The genome-wide de novo mutations and icaA gene expression levels in Staphylococcus aureus under long-term subinhibitory and semisubinhibitory nisin exposure.
{"title":"The genome-wide de novo mutations and icaA gene expression levels in Staphylococcus aureus under long-term subinhibitory and semisubinhibitory nisin exposure.","authors":"Hüseyin Özgür Özdemirel, Sibel Kucukyildirim","doi":"10.1093/femsle/fnaf059","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence and rapid spread of multidrug-resistant pathogens have caused a need for alternative antimicrobials, and bacteriocins are considered promising alternatives due to their lower risk of resistance development. Regarding this, we aimed to investigate the long-term subinhibitory and semisubinhibitory concentrations of a commonly used bacteriocin (nisin) in Staphylococcus aureus using an experimental evolution approach followed by genome sequencing. We then performed RT-qPCR to examine changes in the expression level of the biofilm-related icaA gene in evolved lines. We found that while nisin treatment did not significantly elevate the base-substitution rates, there was a significant decrease in the insertion/deletion rate in the lines exposed to the subinhibitory concentration of nisin. We also revealed an increase in nonsynonymous mutations in specific genes (e.g. sarS and cap8) associated with resistance and virulence mechanisms. Importantly, we observed a transition bias in the nisin-treated lines for the first time, and it may be related to the resistance development to nisin. RT-qPCR analysis of the icaA gene showed a reduced expression levels in nisin-treated groups, although the results were not statistically significant. These findings show the potential outcomes of nisin exposure in S. aureus and emphasize the need for careful consideration of bacteriocins in clinical practice.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence and rapid spread of multidrug-resistant pathogens have caused a need for alternative antimicrobials, and bacteriocins are considered promising alternatives due to their lower risk of resistance development. Regarding this, we aimed to investigate the long-term subinhibitory and semisubinhibitory concentrations of a commonly used bacteriocin (nisin) in Staphylococcus aureus using an experimental evolution approach followed by genome sequencing. We then performed RT-qPCR to examine changes in the expression level of the biofilm-related icaA gene in evolved lines. We found that while nisin treatment did not significantly elevate the base-substitution rates, there was a significant decrease in the insertion/deletion rate in the lines exposed to the subinhibitory concentration of nisin. We also revealed an increase in nonsynonymous mutations in specific genes (e.g. sarS and cap8) associated with resistance and virulence mechanisms. Importantly, we observed a transition bias in the nisin-treated lines for the first time, and it may be related to the resistance development to nisin. RT-qPCR analysis of the icaA gene showed a reduced expression levels in nisin-treated groups, although the results were not statistically significant. These findings show the potential outcomes of nisin exposure in S. aureus and emphasize the need for careful consideration of bacteriocins in clinical practice.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.