A robust Bayesian latent position approach for community detection in networks with continuous attributes.

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-11-29 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2431736
Zhumengmeng Jin, Juan Sosa, Shangchen Song, Brenda Betancourt
{"title":"A robust Bayesian latent position approach for community detection in networks with continuous attributes.","authors":"Zhumengmeng Jin, Juan Sosa, Shangchen Song, Brenda Betancourt","doi":"10.1080/02664763.2024.2431736","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of multiplex networks has spurred a critical need to take into account potential dependencies across different layers, especially when the goal is community detection, which is a fundamental learning task in network analysis. We propose a full Bayesian mixture model for community detection in both single-layer and multi-layer networks. A key feature of our model is the joint modeling of the nodal attributes that often come with the network data as a spatial process over the latent space. In addition, our model for multi-layer networks allows layers to have different strengths of dependency in the unique latent position structure and assumes that the probability of a relation between two actors (in a layer) depends on the distances between their latent positions (multiplied by a layer-specific factor) and the difference between their nodal attributes. Under our prior specifications, the actors' positions in the latent space arise from a finite mixture of Gaussian distributions, each corresponding to a cluster. Simulated examples show that our model outperforms existing benchmark models and exhibits significantly greater robustness when handling datasets with missing values. The model is also applied to a real-world three-layer network of employees in a law firm.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 8","pages":"1513-1538"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2431736","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of multiplex networks has spurred a critical need to take into account potential dependencies across different layers, especially when the goal is community detection, which is a fundamental learning task in network analysis. We propose a full Bayesian mixture model for community detection in both single-layer and multi-layer networks. A key feature of our model is the joint modeling of the nodal attributes that often come with the network data as a spatial process over the latent space. In addition, our model for multi-layer networks allows layers to have different strengths of dependency in the unique latent position structure and assumes that the probability of a relation between two actors (in a layer) depends on the distances between their latent positions (multiplied by a layer-specific factor) and the difference between their nodal attributes. Under our prior specifications, the actors' positions in the latent space arise from a finite mixture of Gaussian distributions, each corresponding to a cluster. Simulated examples show that our model outperforms existing benchmark models and exhibits significantly greater robustness when handling datasets with missing values. The model is also applied to a real-world three-layer network of employees in a law firm.

连续属性网络中社团检测的鲁棒贝叶斯潜在位置方法。
随着多路网络的日益普及,人们迫切需要考虑不同层之间的潜在依赖关系,特别是当目标是社区检测时,这是网络分析中的一项基本学习任务。我们提出了一个完整的贝叶斯混合模型,用于单层和多层网络中的社区检测。我们模型的一个关键特征是节点属性的联合建模,这些节点属性通常作为潜在空间上的空间过程与网络数据一起出现。此外,我们的多层网络模型允许各层在独特的潜在位置结构中具有不同的依赖强度,并假设两个参与者(在一层中)之间关系的概率取决于其潜在位置之间的距离(乘以特定于层的因素)及其节点属性之间的差异。在我们之前的规范下,参与者在潜在空间中的位置来自高斯分布的有限混合,每个分布对应于一个簇。模拟示例表明,我们的模型优于现有的基准模型,并且在处理缺失值的数据集时表现出更强的鲁棒性。该模型也适用于现实世界中一家律师事务所的三层员工网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信