{"title":"A defective cure rate quantile regression model for male breast cancer data.","authors":"Agatha Rodrigues, Patrick Borges, Bruno Santos","doi":"10.1080/02664763.2024.2428272","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we particularly address the problem of assessing the impact of different prognostic factors, such as clinical stage and age, on the specific survival times of men with breast cancer when cure is a possibility. To this end, we developed a quantile regression model for survival data in the presence of long-term survivors based on the generalized Gompertz distribution in a defective version, which is conveniently reparametrized in terms of the <i>q</i>-th quantile and then linked to covariates via a logarithm link function. This proposal allows us to obtain how each variable affects the survival times in different quantiles. In addition, we are able to study the effects of covariates on the cure rate as well. We consider Markov Chain Monte Carlo methods to develop a Bayesian analysis in the proposed model and we evaluate its performance through Monte Carlo simulation studies. Finally, we illustrate the application of our model in a data set about male breast cancer from Brazil analyzed for the very first time.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 8","pages":"1485-1512"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2428272","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we particularly address the problem of assessing the impact of different prognostic factors, such as clinical stage and age, on the specific survival times of men with breast cancer when cure is a possibility. To this end, we developed a quantile regression model for survival data in the presence of long-term survivors based on the generalized Gompertz distribution in a defective version, which is conveniently reparametrized in terms of the q-th quantile and then linked to covariates via a logarithm link function. This proposal allows us to obtain how each variable affects the survival times in different quantiles. In addition, we are able to study the effects of covariates on the cure rate as well. We consider Markov Chain Monte Carlo methods to develop a Bayesian analysis in the proposed model and we evaluate its performance through Monte Carlo simulation studies. Finally, we illustrate the application of our model in a data set about male breast cancer from Brazil analyzed for the very first time.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.