{"title":"Comptonellins A-H, Highly Potent Antiviral Ternatin-type Cyclopeptides from <i>Comptonella drupacea</i>.","authors":"Cécile Apel, Juliano Haddad, Charline Herrscher, Clément Grisel, Justine Girard, Florent Olivon, Cyril Poullain, Jean-François Gallard, Stéphanie Boutet, Fanny Roussi, Sandy Desrat, Chaker El Kalamouni, Marc Litaudon","doi":"10.1021/acs.jnatprod.5c00318","DOIUrl":null,"url":null,"abstract":"<p><p>An antiviral screening of plant extracts from Rutaceae and Annonaceae families led to the isolation of a series of new cycloheptapeptides, comptonellins A-H (<b>1</b>-<b>8</b>), along with the known ternatin (<b>9</b>). These compounds were isolated from the ethyl acetate bark extract of <i>Comptonella drupacea</i> (Labill.) Guillaumin, an endemic Rutaceae species of New Caledonia. Following targeted isolation guided by multi-informative molecular networks, the structures of compounds <b>1</b>-<b>9</b> were elucidated through a comprehensive analysis of spectroscopic data. This revealed novel molecules featuring previously unreported and noncanonical amino acids. The absolute configuration of stereocenters was partially determined by advanced Marfey's method. Biological evaluation against Zika virus demonstrated the potent antiviral properties of comptonellin A and comptonellins C-G, with IC<sub>50</sub> values ranging from 7 to 240 nM. Further investigations revealed that comptonellin A displayed broad-spectrum antiviral activity, inhibiting Dengue virus, Ross River virus, and SARS-CoV-2. These findings highlight comptonellins as promising antiviral scaffolds, supporting further investigation into their therapeutic potential against emerging viral infections.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
An antiviral screening of plant extracts from Rutaceae and Annonaceae families led to the isolation of a series of new cycloheptapeptides, comptonellins A-H (1-8), along with the known ternatin (9). These compounds were isolated from the ethyl acetate bark extract of Comptonella drupacea (Labill.) Guillaumin, an endemic Rutaceae species of New Caledonia. Following targeted isolation guided by multi-informative molecular networks, the structures of compounds 1-9 were elucidated through a comprehensive analysis of spectroscopic data. This revealed novel molecules featuring previously unreported and noncanonical amino acids. The absolute configuration of stereocenters was partially determined by advanced Marfey's method. Biological evaluation against Zika virus demonstrated the potent antiviral properties of comptonellin A and comptonellins C-G, with IC50 values ranging from 7 to 240 nM. Further investigations revealed that comptonellin A displayed broad-spectrum antiviral activity, inhibiting Dengue virus, Ross River virus, and SARS-CoV-2. These findings highlight comptonellins as promising antiviral scaffolds, supporting further investigation into their therapeutic potential against emerging viral infections.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.