{"title":"Carboxylic Acid Tailoring in Thioquinolobactin Biosynthesis.","authors":"Xuan Wang, Xiaolin Tian, Jiawei Guo, Fangyuan Cheng, Mingyu Liu, Shanmin Zheng, Yangliu Feng, Ying Lv, Yuanning Li, Shengying Li, Xingwang Zhang","doi":"10.1021/acs.jnatprod.5c00331","DOIUrl":null,"url":null,"abstract":"<p><p>The biosynthetic mechanism underlying the formation of thiocarboxylic acid moieties in natural products remains largely unknown. Thioquinolobactin (TQB) is a <i>Pseudomonas fluorescens</i> derived siderophore that contains a thiocarboxylic acid moiety within its structure. Although the biosynthetic gene cluster and proposed pathway for TQB formation have been reported, the biosynthetic mechanism related to the thiocarboxylic acid formation are yet to be fully understood. In this study, we address this question by demonstrating that a unique dual-domain protein QbsL, which possesses both CoA ligase and methyltransferase activities, along with the sulfurtransferase QbsK, facilitates the assembly of the thiocarboxylic acid. Based on this mechanism, we develop a chemoenzymatic method to convert carboxylic acid into selenocarboxylic acid, thereby generating selenium-containing analogues of TQB. These findings resolve the long-standing mystery in TQB biosynthesis and expand the synthetic toolkit for carboxylic acid modification.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00331","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The biosynthetic mechanism underlying the formation of thiocarboxylic acid moieties in natural products remains largely unknown. Thioquinolobactin (TQB) is a Pseudomonas fluorescens derived siderophore that contains a thiocarboxylic acid moiety within its structure. Although the biosynthetic gene cluster and proposed pathway for TQB formation have been reported, the biosynthetic mechanism related to the thiocarboxylic acid formation are yet to be fully understood. In this study, we address this question by demonstrating that a unique dual-domain protein QbsL, which possesses both CoA ligase and methyltransferase activities, along with the sulfurtransferase QbsK, facilitates the assembly of the thiocarboxylic acid. Based on this mechanism, we develop a chemoenzymatic method to convert carboxylic acid into selenocarboxylic acid, thereby generating selenium-containing analogues of TQB. These findings resolve the long-standing mystery in TQB biosynthesis and expand the synthetic toolkit for carboxylic acid modification.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.