Enhanced structural, optical, electrical, photocatalytic, and scavengers test of Er-doped ZnO thin films via dip coating for optoelectronic and environmental applications under UV and sunlight exposure

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Romaissa Allouche , Sabrina Roguai , Abdelkader Djelloul , Najoua Turki Kamoun
{"title":"Enhanced structural, optical, electrical, photocatalytic, and scavengers test of Er-doped ZnO thin films via dip coating for optoelectronic and environmental applications under UV and sunlight exposure","authors":"Romaissa Allouche ,&nbsp;Sabrina Roguai ,&nbsp;Abdelkader Djelloul ,&nbsp;Najoua Turki Kamoun","doi":"10.1016/j.tsf.2025.140718","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of erbium (Er) doping on the structural, optical, electrical, and photocatalytic properties of ZnO thin films synthesized via the sol-gel dip-coating method. X-ray diffraction (XRD) confirms a hexagonal wurtzite structure, with peak shifts indicating strain induced by Er incorporation. Notably, a secondary Er-related phase emerges at higher doping levels (10 % and 15 %), suggesting the solubility limit of Er in the ZnO matrix. Scanning electron microscopy (SEM) reveals that moderate doping (2–5 %) improves film uniformity, while excessive Er content (10 % and above) leads to porosity and grain boundary defects. Photoluminescence (PL) spectra show enhanced near-band-edge (NBE) emission (405–416 nm) with increasing Er content, peaking at 15 %, while defect-related emissions (486 nm and 528 nm) indicate changes in charge trapping mechanisms. Electrical analysis via impedance spectroscopy demonstrates improved conductivity, with a decrease in parallel resistance (Rp) up to 10 % Er, followed by an increase at 15 % due to excess defect formation. Photocatalytic experiments using methylene blue (MB) under UV and sunlight irradiation reveal enhanced degradation efficiency, with 2 % Er-doped ZnO performing best under UV light and 10 % Er showing optimal performance under sunlight. Kinetic analysis follows a pseudo-first-order reaction model, Scavenger experiments confirm that hydroxyl radicals (•OH) playing a dominant role under UV irradiation. These results highlight the critical role of Er solubility in tuning ZnO’s properties, making Er-doped ZnO a promising material for optoelectronic applications and environmental remediation.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"825 ","pages":"Article 140718"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060902500118X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of erbium (Er) doping on the structural, optical, electrical, and photocatalytic properties of ZnO thin films synthesized via the sol-gel dip-coating method. X-ray diffraction (XRD) confirms a hexagonal wurtzite structure, with peak shifts indicating strain induced by Er incorporation. Notably, a secondary Er-related phase emerges at higher doping levels (10 % and 15 %), suggesting the solubility limit of Er in the ZnO matrix. Scanning electron microscopy (SEM) reveals that moderate doping (2–5 %) improves film uniformity, while excessive Er content (10 % and above) leads to porosity and grain boundary defects. Photoluminescence (PL) spectra show enhanced near-band-edge (NBE) emission (405–416 nm) with increasing Er content, peaking at 15 %, while defect-related emissions (486 nm and 528 nm) indicate changes in charge trapping mechanisms. Electrical analysis via impedance spectroscopy demonstrates improved conductivity, with a decrease in parallel resistance (Rp) up to 10 % Er, followed by an increase at 15 % due to excess defect formation. Photocatalytic experiments using methylene blue (MB) under UV and sunlight irradiation reveal enhanced degradation efficiency, with 2 % Er-doped ZnO performing best under UV light and 10 % Er showing optimal performance under sunlight. Kinetic analysis follows a pseudo-first-order reaction model, Scavenger experiments confirm that hydroxyl radicals (•OH) playing a dominant role under UV irradiation. These results highlight the critical role of Er solubility in tuning ZnO’s properties, making Er-doped ZnO a promising material for optoelectronic applications and environmental remediation.
在紫外和日光照射下,通过浸渍涂层增强er掺杂ZnO薄膜的结构,光学,电学,光催化和清除剂测试
本研究探讨了铒掺杂对溶胶-凝胶浸涂法制备ZnO薄膜的结构、光学、电学和光催化性能的影响。x射线衍射(XRD)证实了六方纤锌矿结构,其峰移表明Er掺入引起的应变。值得注意的是,在较高的掺杂水平(10%和15%)下,出现了Er相关的次级相,这表明了Er在ZnO基体中的溶解度极限。扫描电镜(SEM)显示,适量的Er含量(2 - 5%)可以改善薄膜的均匀性,而过量的Er含量(10%及以上)会导致孔隙和晶界缺陷。光致发光(PL)光谱显示,随着Er含量的增加,近带边(NBE)发射增强(405 ~ 416 nm),峰值在15%左右,而缺陷相关发射(486 nm和528 nm)表明电荷捕获机制发生了变化。通过阻抗谱进行的电学分析表明,电导率得到了提高,并联电阻(Rp)降低了10%,随后由于形成了过多的缺陷而增加了15%。亚甲基蓝(MB)在紫外和日光照射下的光催化实验表明,ZnO的降解效率得到了提高,其中掺2% Er的ZnO在紫外光下表现最佳,掺10% Er的ZnO在日光下表现最佳。动力学分析遵循伪一级反应模型,清道夫实验证实,在紫外线照射下,羟基自由基(•OH)起主导作用。这些结果强调了Er溶解度在调节ZnO性能中的关键作用,使Er掺杂ZnO成为光电应用和环境修复的有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信