Energy dissipation in silicon nitride microbeam resonators with a 3D-printed polymer layer

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lucia Crocetto , Tomás Manzaneque , Murali Krishna Ghatkesar
{"title":"Energy dissipation in silicon nitride microbeam resonators with a 3D-printed polymer layer","authors":"Lucia Crocetto ,&nbsp;Tomás Manzaneque ,&nbsp;Murali Krishna Ghatkesar","doi":"10.1016/j.mne.2025.100300","DOIUrl":null,"url":null,"abstract":"<div><div>We present an analysis of the main mechanisms of dissipation of resonant multilayer double-clamped microbeams in the frequency range 200 to 500 kHz. The devices consist of <span><math><mn>2</mn><mspace></mspace><mi>μm</mi></math></span> thick silicon nitride (E <span><math><mo>≈</mo></math></span> 160 GPa) beams covered with a polymer IP-Dip (E <span><math><mo>≈</mo></math></span> 4 GPa) layer fabricated by two-photon polymerization. A laser-Doppler vibrometer was used to measure the resonant vibrations and energy dissipation of the devices in high vacuum (&lt; 0.05 Pa) at room temperature. The experimental findings were compared with theoretical and finite element method (FEM) results. The quality factor, dominated by the intrinsic dissipation in the IP-Dip layer, has proven to have a strong dependence on polymer thickness. On this basis, a viscous model for intrinsic dissipation in a polymer layer was formulated.</div></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"28 ","pages":"Article 100300"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007225000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analysis of the main mechanisms of dissipation of resonant multilayer double-clamped microbeams in the frequency range 200 to 500 kHz. The devices consist of 2μm thick silicon nitride (E 160 GPa) beams covered with a polymer IP-Dip (E 4 GPa) layer fabricated by two-photon polymerization. A laser-Doppler vibrometer was used to measure the resonant vibrations and energy dissipation of the devices in high vacuum (< 0.05 Pa) at room temperature. The experimental findings were compared with theoretical and finite element method (FEM) results. The quality factor, dominated by the intrinsic dissipation in the IP-Dip layer, has proven to have a strong dependence on polymer thickness. On this basis, a viscous model for intrinsic dissipation in a polymer layer was formulated.
三维打印聚合物层氮化硅微束谐振器的能量耗散
本文分析了共振多层双箝位微光束在200 ~ 500khz范围内的主要耗散机制。该器件由2μm厚的氮化硅(E≈160 GPa)光束和双光子聚合法制备的聚合物IP-Dip (E≈4 GPa)层组成。用激光多普勒测振仪测量了器件在高真空条件下的共振振动和能量耗散。0.05 Pa)。实验结果与理论计算结果和有限元计算结果进行了比较。以IP-Dip层的本征耗散为主导的质量因子已被证明与聚合物厚度有很强的依赖性。在此基础上,建立了聚合物层内本征耗散的粘性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信