Xiangen Zhao , Xiankang Wang , Yang Liu , Yaping Du , Junjia He
{"title":"An ionization wave detection system for long air gap discharges","authors":"Xiangen Zhao , Xiankang Wang , Yang Liu , Yaping Du , Junjia He","doi":"10.1016/j.optlastec.2025.113357","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the ionization process is essential for elucidating the mechanisms of long air gap discharges. However, existing commercial camera and photodetectors face significant challenges in capturing ionization and propagation dynamics in long air gap discharges due to the rapid evolution (10<sup>6</sup> ∼ 10<sup>7</sup> m/s) of ionization waves, the wide dynamic range of emission intensities, and the requirement for precise spatial calibration. To address these limitations, this study presents an Ionization Wave Detection System (IWDS), designed based on a 16-channel photomultiplier tube (PMT) assembly. By adopting single-lens catadioptric optical imaging design, the IWDS is equipped with a viewfinder window for synchronized spatial calibration and provides a spatial resolution of at least 6 mm per channel, ensuring precise observation of discharge evolution. Additionally, the subsequent analogue signal processing and acquisition units provide the IWDS with a wide range of adjustable gain (up to 1 × 10<sup>6</sup>) and a sampling rate of 200 MSa/s, enabling continuous recording for up to 32 ms, in which the bandwidth of the electrical module is 45 MHz. The system was successfully employed to investigate the rapid evolution of ionization wave across various discharge stages, including initial streamer discharge, re-illumination phenomena, and dark periods. A comparative analysis with existing experimental and simulation data underscores the IWDS’s significant potential for spatio-temporal diagnostics of ionization wave in long air gap discharges.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"191 ","pages":"Article 113357"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003039922500948X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the ionization process is essential for elucidating the mechanisms of long air gap discharges. However, existing commercial camera and photodetectors face significant challenges in capturing ionization and propagation dynamics in long air gap discharges due to the rapid evolution (106 ∼ 107 m/s) of ionization waves, the wide dynamic range of emission intensities, and the requirement for precise spatial calibration. To address these limitations, this study presents an Ionization Wave Detection System (IWDS), designed based on a 16-channel photomultiplier tube (PMT) assembly. By adopting single-lens catadioptric optical imaging design, the IWDS is equipped with a viewfinder window for synchronized spatial calibration and provides a spatial resolution of at least 6 mm per channel, ensuring precise observation of discharge evolution. Additionally, the subsequent analogue signal processing and acquisition units provide the IWDS with a wide range of adjustable gain (up to 1 × 106) and a sampling rate of 200 MSa/s, enabling continuous recording for up to 32 ms, in which the bandwidth of the electrical module is 45 MHz. The system was successfully employed to investigate the rapid evolution of ionization wave across various discharge stages, including initial streamer discharge, re-illumination phenomena, and dark periods. A comparative analysis with existing experimental and simulation data underscores the IWDS’s significant potential for spatio-temporal diagnostics of ionization wave in long air gap discharges.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems