Molecular Networking Reveals Indolo-Sesquiterpene Hybrids from the Marine-Derived Fungus Aspergillus terreus N4-9.

IF 3.3 2区 生物学 Q2 CHEMISTRY, MEDICINAL
Min Chen, Bao-Cong Hao, Ruo-Nan Ji, Long Chen, Xiao-Jian Zhou, Li Shen, Juan-Juan Wang, Li-Kui Zhang
{"title":"Molecular Networking Reveals Indolo-Sesquiterpene Hybrids from the Marine-Derived Fungus <i>Aspergillus terreus</i> N4-9.","authors":"Min Chen, Bao-Cong Hao, Ruo-Nan Ji, Long Chen, Xiao-Jian Zhou, Li Shen, Juan-Juan Wang, Li-Kui Zhang","doi":"10.1021/acs.jnatprod.5c00423","DOIUrl":null,"url":null,"abstract":"<p><p>Tandem mass spectrometry (MS/MS)-based molecular networking has emerged as a powerful tool for rapid dereplication of known compounds and discovery of novel structural analogues within the same metabolite class. In this study, the chemical diversity of indolo-sesquiterpene hybrids from the mangrove rhizosphere soil-derived fungus, <i>Aspergillus terreus</i> N4-9, was investigated by using molecular networking strategies. The known indolo-sesquiterpene hybrid terreuside B (<b>1</b>) along with three new analogues, terreusides C-E (<b>2</b>-<b>4</b>), were targeted isolation from the fungal cultures. Additionally, three putative new congeners, terreusides F-H (<b>8</b>-<b>10</b>), were tentatively identified through systematic analysis of their characteristic MS/MS fragmentation patterns. Detailed fragmentation studies revealed two predominant cleavage pathways for these hybrids related to fracture of the methylene bridge connecting Rings A and B (Type I) and furan opening in Ring C (Type II). Compound <b>2</b> demonstrated significant growth inhibitory activity against human gastric cancer SGC-7901 cells with an IC<sub>50</sub> value of 6.25 μM.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00423","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tandem mass spectrometry (MS/MS)-based molecular networking has emerged as a powerful tool for rapid dereplication of known compounds and discovery of novel structural analogues within the same metabolite class. In this study, the chemical diversity of indolo-sesquiterpene hybrids from the mangrove rhizosphere soil-derived fungus, Aspergillus terreus N4-9, was investigated by using molecular networking strategies. The known indolo-sesquiterpene hybrid terreuside B (1) along with three new analogues, terreusides C-E (2-4), were targeted isolation from the fungal cultures. Additionally, three putative new congeners, terreusides F-H (8-10), were tentatively identified through systematic analysis of their characteristic MS/MS fragmentation patterns. Detailed fragmentation studies revealed two predominant cleavage pathways for these hybrids related to fracture of the methylene bridge connecting Rings A and B (Type I) and furan opening in Ring C (Type II). Compound 2 demonstrated significant growth inhibitory activity against human gastric cancer SGC-7901 cells with an IC50 value of 6.25 μM.

海洋来源真菌土曲霉N4-9的吲哚-倍半萜杂合体的分子网络研究。
基于串联质谱(MS/MS)的分子网络已成为快速复制已知化合物和在同一代谢物类别中发现新的结构类似物的强大工具。本研究采用分子网络方法研究了红树根际土源真菌土曲霉N4-9的吲哚倍半萜杂交后代的化学多样性。已知的吲哚倍半萜杂合物terreusides B(1)和三个新的类似物terreusides C-E(2-4)从真菌培养物中分离得到。此外,通过系统分析其特征的MS/MS破碎模式,初步确定了三个假定的新同源物,即terrreusides F-H(8-10)。详细的破碎研究揭示了这些杂合体的两种主要解理途径,与连接环A和B的亚甲基桥断裂(I型)和环C的呋喃开口断裂(II型)有关。化合物2对人胃癌SGC-7901细胞有明显的生长抑制作用,IC50值为6.25 μM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
5.90%
发文量
294
审稿时长
2.3 months
期刊介绍: The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin. When new compounds are reported, manuscripts describing their biological activity are much preferred. Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信