Evaluation of In Vivo and In Vitro Toxicity of Chestnut (Castanea mollissima Blume) Plant: Developmental Toxicity in Zebrafish Embryos Cytotoxicity, Antioxidant Activity, and Phytochemical Composition by LC-ESI-MS/MS
İbrahim Demirtas, Mehmet Nuri Atalar, Zeynebe Bingol, Mine Köktürk, Gunes Ozhan, Amine Hafis Abdelsalam, Sevki Arslan, İlhami Gülçin
{"title":"Evaluation of In Vivo and In Vitro Toxicity of Chestnut (Castanea mollissima Blume) Plant: Developmental Toxicity in Zebrafish Embryos Cytotoxicity, Antioxidant Activity, and Phytochemical Composition by LC-ESI-MS/MS","authors":"İbrahim Demirtas, Mehmet Nuri Atalar, Zeynebe Bingol, Mine Köktürk, Gunes Ozhan, Amine Hafis Abdelsalam, Sevki Arslan, İlhami Gülçin","doi":"10.1002/fsn3.70387","DOIUrl":null,"url":null,"abstract":"<p>The search for novel therapeutic agents has led to increasing interest in natural products, driven by the recognition that they may offer safer and more sustainable alternatives to synthetic drugs. This study aims to fill the gap in knowledge regarding the biological activity and safety of the water extract of chestnut (<i>Castanea mollissima</i>) (chestnut), a plant species with a long history of use in traditional medicine, by conducting a comprehensive evaluation of its antioxidant, antidiabetic, and neuroprotective properties. This study presents a comprehensive analysis of the water extract of chestnut for the first time using various bioanalytical antioxidant methods. The extract's inhibitory effects on key enzymes like acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase were evaluated due to their relevance in metabolic and neurodegenerative disorders such as diabetes and Alzheimer's disease. Developmental toxicity and cytotoxicity were assessed using zebrafish (<i>Danio rerio</i>) embryos to evaluate the extract's biological safety. The major phenolic compounds present in the extract were identified by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), revealing catechin, gallic acid, taxifolin, and epicatechin as the predominant constituents. Antioxidant capacity was determined through radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH<sup>•</sup>) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS<sup>•+</sup>), alongside ferric (Fe<sup>3+</sup>), cupric (Cu<sup>2+</sup>), and Fe<sup>3+</sup>-TPTZ (ferric-tripyridyltriazine) reducing power assays. The findings highlight the significant antioxidant, antidiabetic, and neuroprotective potential of the chestnut water extract, supporting its prospective use in pharmaceutical and nutraceutical applications.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"13 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.70387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.70387","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The search for novel therapeutic agents has led to increasing interest in natural products, driven by the recognition that they may offer safer and more sustainable alternatives to synthetic drugs. This study aims to fill the gap in knowledge regarding the biological activity and safety of the water extract of chestnut (Castanea mollissima) (chestnut), a plant species with a long history of use in traditional medicine, by conducting a comprehensive evaluation of its antioxidant, antidiabetic, and neuroprotective properties. This study presents a comprehensive analysis of the water extract of chestnut for the first time using various bioanalytical antioxidant methods. The extract's inhibitory effects on key enzymes like acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase were evaluated due to their relevance in metabolic and neurodegenerative disorders such as diabetes and Alzheimer's disease. Developmental toxicity and cytotoxicity were assessed using zebrafish (Danio rerio) embryos to evaluate the extract's biological safety. The major phenolic compounds present in the extract were identified by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), revealing catechin, gallic acid, taxifolin, and epicatechin as the predominant constituents. Antioxidant capacity was determined through radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), alongside ferric (Fe3+), cupric (Cu2+), and Fe3+-TPTZ (ferric-tripyridyltriazine) reducing power assays. The findings highlight the significant antioxidant, antidiabetic, and neuroprotective potential of the chestnut water extract, supporting its prospective use in pharmaceutical and nutraceutical applications.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.