{"title":"In silico cardiac safety profile of drugs and their potential to induce clinical cardiotoxicity","authors":"Bernard Christophe","doi":"10.1016/j.taap.2025.117426","DOIUrl":null,"url":null,"abstract":"<div><div>During the cardiac safety pharmacology decision-making process, a precise evaluation of the proarrhythmic liabilities of new drug candidates is essential to prevent serious side effects like torsade de pointes (TdP), which could result in sudden death. Based in part on <em>in silico</em> reconstruction of the human ventricular cardiomyocyte action potential (AP), the Comprehensive <em>in vitro</em> Proarrhthymia Assay (CiPA) initiative aims to achieve this goal. Because it is based on a significant amount of human data, the O'Hara-Rudy dynamic model is the first algorithm approved by the CiPA initiative for AP modeling. This algorithm was used to build a new database (<span><span>www.scaptest.com</span><svg><path></path></svg></span> for Safe Cardiac Action Potential test) in order to fully describe the <em>in silico</em> cardiac safety profile of a very large set of 200 compounds based on their concentration required to induce effects on AP shape and time course (resting membrane potential, AP maximal amplitude, AP duration) as well as on various predictive safety parameters extrapolated from this AP (triangulation, transmural dispersion of repolarization, reverse use dependence, likelihood of inducing early afterdepolarization (EAD), occurrence of EAD, threshold leading to EAD). This description of the <em>in silico</em> cardiac safety profile helps warn against the use of certain compounds possibly inducing cardiac safety issues (such as TdP or inexcitability) at least at high concentrations.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"502 ","pages":"Article 117426"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25002029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
During the cardiac safety pharmacology decision-making process, a precise evaluation of the proarrhythmic liabilities of new drug candidates is essential to prevent serious side effects like torsade de pointes (TdP), which could result in sudden death. Based in part on in silico reconstruction of the human ventricular cardiomyocyte action potential (AP), the Comprehensive in vitro Proarrhthymia Assay (CiPA) initiative aims to achieve this goal. Because it is based on a significant amount of human data, the O'Hara-Rudy dynamic model is the first algorithm approved by the CiPA initiative for AP modeling. This algorithm was used to build a new database (www.scaptest.com for Safe Cardiac Action Potential test) in order to fully describe the in silico cardiac safety profile of a very large set of 200 compounds based on their concentration required to induce effects on AP shape and time course (resting membrane potential, AP maximal amplitude, AP duration) as well as on various predictive safety parameters extrapolated from this AP (triangulation, transmural dispersion of repolarization, reverse use dependence, likelihood of inducing early afterdepolarization (EAD), occurrence of EAD, threshold leading to EAD). This description of the in silico cardiac safety profile helps warn against the use of certain compounds possibly inducing cardiac safety issues (such as TdP or inexcitability) at least at high concentrations.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.