MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Shang Li, Yanan Wu, Bojun Jiang, Lingkai Liu, Tiande Zhang, Yu Sun, Jie Hou, Patrice Monkam, Wei Qian, Shouliang Qi
{"title":"MHASegNet: A multi-scale hybrid aggregation network of segmenting coronary artery from CCTA images.","authors":"Shang Li, Yanan Wu, Bojun Jiang, Lingkai Liu, Tiande Zhang, Yu Sun, Jie Hou, Patrice Monkam, Wei Qian, Shouliang Qi","doi":"10.1177/08953996251346484","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission.</p><p><strong>Objective: </strong>The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques.</p><p><strong>Methods: </strong>We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects.</p><p><strong>Results: </strong>MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset.</p><p><strong>Conclusion: </strong>The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251346484"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251346484","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images is crucial for diagnosing coronary artery disease (CAD), but remains challenging due to small artery size, uneven contrast distribution, and issues like over-segmentation or omission.

Objective: The aim of this study is to improve coronary artery segmentation in CCTA images using both conventional and deep learning techniques.

Methods: We propose MHASegNet, a lightweight network for coronary artery segmentation, combined with a tailored refinement method. MHASegNet employs multi-scale hybrid attention to capture global and local features, and integrates a 3D context anchor attention module to focus on key coronary artery structures while suppressing background noise. An iterative, region-growth-based refinement addresses crown breaks and reduces false alarms. We evaluated the method on an in-house dataset of 90 subjects and two public datasets with 1060 subjects.

Results: MHASegNet, coupled with tailored refinement, outperforms state-of-the-art algorithms, achieving a Dice Similarity Coefficient (DSC) of 0.867 on the in-house dataset, 0.875 on the ASOCA dataset, and 0.827 on the ImageCAS dataset.

Conclusion: The tailored refinement significantly reduces false positives and resolves most discontinuities, even for other networks. MHASegNet and the tailored refinement may aid in diagnosing and quantifying CAD following further validation.

MHASegNet:一种从CCTA图像中分割冠状动脉的多尺度混合聚合网络。
背景:冠状动脉ct血管造影(CCTA)图像中冠状动脉的分割对于诊断冠状动脉疾病(CAD)至关重要,但由于冠状动脉尺寸小、对比度分布不均匀以及过度分割或遗漏等问题,仍然具有挑战性。目的:本研究的目的是利用传统和深度学习技术改善CCTA图像中的冠状动脉分割。方法:我们提出了一种轻量级的冠状动脉分割网络MHASegNet,并结合了量身定制的细化方法。MHASegNet采用多尺度混合注意力捕获全局和局部特征,并集成3D上下文锚定注意力模块,在抑制背景噪声的同时关注关键冠状动脉结构。迭代的、基于区域增长的改进解决了冠状断裂并减少了错误警报。我们在一个包含90名受试者的内部数据集和两个包含1060名受试者的公共数据集上评估了该方法。结果:MHASegNet,加上量身定制的细化,优于最先进的算法,在内部数据集上实现了骰子相似系数(DSC)为0.867,在ASOCA数据集上为0.875,在ImageCAS数据集上为0.827。结论:量身定制的细化显着减少了误报并解决了大多数不连续性,即使对于其他网络也是如此。在进一步验证后,MHASegNet和量身定制的细化可能有助于诊断和量化CAD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信