Xin Qin, Xiang Zhou, Chen Chen, Dongyuan Wu, Hansen Zhou, Xiaowei Dong, Limei Cao, Jackson G Lu
{"title":"AI aversion or appreciation? A capability-personalization framework and a meta-analytic review.","authors":"Xin Qin, Xiang Zhou, Chen Chen, Dongyuan Wu, Hansen Zhou, Xiaowei Dong, Limei Cao, Jackson G Lu","doi":"10.1037/bul0000477","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming human life. While some studies find that people prefer humans over AI (AI aversion), others find the opposite (AI appreciation). To reconcile these conflicting findings, we introduce the Capability-Personalization Framework. This theoretical framework posits that when deciding between AI and humans in a context, individuals focus on two dimensions: (a) perceived capability of AI and (b) perceived necessity for personalization. We propose that AI appreciation occurs when (a) AI is perceived as more capable than humans and (b) personalization is perceived as unnecessary in a given decision context, whereas AI aversion occurs when these conditions are not met. Our Capability-Personalization Framework is substantiated by a meta-analysis of 442 effect sizes from 163 studies (N = 82,078): AI appreciation occurs (d = 0.27, 95% CI [0.17, 0.37]) when AI is perceived as more capable than humans and personalization is perceived as unnecessary in a given decision context; otherwise, AI aversion occurs (d = -0.50, 95% CI [-0.63, -0.37]). Moderation analyses suggest that AI appreciation is more pronounced for tangible robots (vs. intangible algorithms), for attitudinal (vs. behavioral) outcomes, in between-subjects (vs. within-subjects) study designs, and in low unemployment countries, while AI aversion is more pronounced in countries with high levels of education and internet use. Overall, our integrative framework and meta-analysis advance knowledge about AI-human preferences and offer valuable implications for AI developers and users. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20854,"journal":{"name":"Psychological bulletin","volume":"151 5","pages":"580-599"},"PeriodicalIF":17.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological bulletin","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/bul0000477","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is transforming human life. While some studies find that people prefer humans over AI (AI aversion), others find the opposite (AI appreciation). To reconcile these conflicting findings, we introduce the Capability-Personalization Framework. This theoretical framework posits that when deciding between AI and humans in a context, individuals focus on two dimensions: (a) perceived capability of AI and (b) perceived necessity for personalization. We propose that AI appreciation occurs when (a) AI is perceived as more capable than humans and (b) personalization is perceived as unnecessary in a given decision context, whereas AI aversion occurs when these conditions are not met. Our Capability-Personalization Framework is substantiated by a meta-analysis of 442 effect sizes from 163 studies (N = 82,078): AI appreciation occurs (d = 0.27, 95% CI [0.17, 0.37]) when AI is perceived as more capable than humans and personalization is perceived as unnecessary in a given decision context; otherwise, AI aversion occurs (d = -0.50, 95% CI [-0.63, -0.37]). Moderation analyses suggest that AI appreciation is more pronounced for tangible robots (vs. intangible algorithms), for attitudinal (vs. behavioral) outcomes, in between-subjects (vs. within-subjects) study designs, and in low unemployment countries, while AI aversion is more pronounced in countries with high levels of education and internet use. Overall, our integrative framework and meta-analysis advance knowledge about AI-human preferences and offer valuable implications for AI developers and users. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Bulletin publishes syntheses of research in scientific psychology. Research syntheses seek to summarize past research by drawing overall conclusions from many separate investigations that address related or identical hypotheses.
A research synthesis typically presents the authors' assessments:
-of the state of knowledge concerning the relations of interest;
-of critical assessments of the strengths and weaknesses in past research;
-of important issues that research has left unresolved, thereby directing future research so it can yield a maximum amount of new information.