{"title":"Enhanced solubility and bioavailability of coenzyme Q10 via co-amorphous system using stevioside.","authors":"Yingting Luo, Yuxin Li, Xuening Song, Yuzhuo Wang, Simiao Liu, Fazheng Ren, Hao Zhang","doi":"10.1038/s41538-025-00465-0","DOIUrl":null,"url":null,"abstract":"<p><p>Coenzyme Q10 (CoQ10) plays a vital role in aerobic respiration and cardiovascular diseases; however, its application is limited owing to poor water solubility. In this study, equimolar CoQ10 and stevioside (STE) formed a co-amorphous (CM) system by lyophilization, and its solubility was approximately 63 times higher than that of CoQ10. Through crystal, thermodynamic, and morphological characterization of the formula, the formation of the CM system was confirmed. The intermolecular interactions were investigated by spectroscopies. The relationship of 8 intermolecular interaction sites between the two was confirmed via molecular dynamics simulation, firmly indicating the strong intermolecular forces. Further, CM products remained stable even under accelerated storage conditions, equivalent to 1 year at room temperature. Meanwhile, the area under curve (AUC) values increased by 5 times in the in vivo bioavailability study. In conclusion, the CoQ10 was transformed into an amorphous structure by initially employing STE through intermolecular interactions to enhance solubility.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"98"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00465-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coenzyme Q10 (CoQ10) plays a vital role in aerobic respiration and cardiovascular diseases; however, its application is limited owing to poor water solubility. In this study, equimolar CoQ10 and stevioside (STE) formed a co-amorphous (CM) system by lyophilization, and its solubility was approximately 63 times higher than that of CoQ10. Through crystal, thermodynamic, and morphological characterization of the formula, the formation of the CM system was confirmed. The intermolecular interactions were investigated by spectroscopies. The relationship of 8 intermolecular interaction sites between the two was confirmed via molecular dynamics simulation, firmly indicating the strong intermolecular forces. Further, CM products remained stable even under accelerated storage conditions, equivalent to 1 year at room temperature. Meanwhile, the area under curve (AUC) values increased by 5 times in the in vivo bioavailability study. In conclusion, the CoQ10 was transformed into an amorphous structure by initially employing STE through intermolecular interactions to enhance solubility.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.