{"title":"Unit-Cell-Based Approach for Electromigration Compliance Checks in VLSI Power Delivery Networks","authors":"Simone Esposto;Ivan Ciofi;Giuliano Sisto;Kristof Croes;Dragomir Milojevic;Houman Zahedmanesh","doi":"10.1109/TDMR.2025.3566054","DOIUrl":null,"url":null,"abstract":"As the electromigration (EM) reliability margin reduces rapidly with scaling, novel approaches for EM-compliance checks are being intensively sought to enable more accurate and less conservative analyses. Currently, chip-level EM reliability is assessed based on the failure probability of individual lines and vias in the BEOL stack, overlooking potential redundant connections that could still ensure circuit operation despite isolated failures. This is particularly relevant for the power delivery network (PDN), which is redundant by definition due to its regular mesh structure. In this work, we leverage a new approach to perform EM-compliance checks that relies on considering the PDN as a matrix of identical network units-cells, henceforth referred to as tiles, and using them to compute the overall failure risk. As opposed to conventional methods, our approach captures the impact of redundancy within each individual PDN tile, thereby providing less conservative reliability estimations. After reviewing standard methods for EM-compliance checks, namely limit-based and statistical EM budgeting (SEB), we quantify the additional reliability margin provided by our PDN-tile approach. For our analysis, we considered a PDN featuring three different metallization schemes for Dual Damascene (DD) Cu/Low-k interconnects utilizing SiCN capping, Cobalt (Co) capping with and without Ruthenium (Ru) via prefill. Using the standard SEB method indicated that Co capping and Co capping + Ru Via Prefill lead to reductions in EM failure risk by 5 and 7 orders of magnitude, respectively, compared to SiCN capping. The new approach was implemented for the first metallization with SiCN capping. At 10 years lifetime, our PDN-tile approach foresees a failure probability which is 3 orders of magnitude smaller than the SEB approach. At an equivalent failure probability of 100ppm and the same target lifetime of 10 years, the current of standard cells can be increased by 2.8-fold, giving designers more margin to improve chip performances.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"232-239"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10981877/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As the electromigration (EM) reliability margin reduces rapidly with scaling, novel approaches for EM-compliance checks are being intensively sought to enable more accurate and less conservative analyses. Currently, chip-level EM reliability is assessed based on the failure probability of individual lines and vias in the BEOL stack, overlooking potential redundant connections that could still ensure circuit operation despite isolated failures. This is particularly relevant for the power delivery network (PDN), which is redundant by definition due to its regular mesh structure. In this work, we leverage a new approach to perform EM-compliance checks that relies on considering the PDN as a matrix of identical network units-cells, henceforth referred to as tiles, and using them to compute the overall failure risk. As opposed to conventional methods, our approach captures the impact of redundancy within each individual PDN tile, thereby providing less conservative reliability estimations. After reviewing standard methods for EM-compliance checks, namely limit-based and statistical EM budgeting (SEB), we quantify the additional reliability margin provided by our PDN-tile approach. For our analysis, we considered a PDN featuring three different metallization schemes for Dual Damascene (DD) Cu/Low-k interconnects utilizing SiCN capping, Cobalt (Co) capping with and without Ruthenium (Ru) via prefill. Using the standard SEB method indicated that Co capping and Co capping + Ru Via Prefill lead to reductions in EM failure risk by 5 and 7 orders of magnitude, respectively, compared to SiCN capping. The new approach was implemented for the first metallization with SiCN capping. At 10 years lifetime, our PDN-tile approach foresees a failure probability which is 3 orders of magnitude smaller than the SEB approach. At an equivalent failure probability of 100ppm and the same target lifetime of 10 years, the current of standard cells can be increased by 2.8-fold, giving designers more margin to improve chip performances.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.