Yang Li , Tong Gao , Yongbin Huang , Longlong Song , Weihong Zhang
{"title":"Layout optimization design method for thermo-elastic thin-walled structures with lattices and stiffeners","authors":"Yang Li , Tong Gao , Yongbin Huang , Longlong Song , Weihong Zhang","doi":"10.1016/j.advengsoft.2025.103962","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a layout optimization design method for thermo-elastic thin-walled structures with lattices and stiffeners in the framework of multi-material topology optimization, in which both the steady-state temperature field and mechanical loads are considered. Firstly, taking into account the design requirements, suitable lattice unit cells are chosen and their equivalent mechanical properties are obtained by the homogenization method. Thus, the candidate lattice unit cells are represented as corresponding virtual homogeneous materials. Meanwhile, the stiffeners are modelled with solid material. Afterwards, a multi-material thermo-elastic structural optimization formulation is established and solved iteratively through gradient-driven optimization algorithms to obtain the optimized layouts of the lattices and stiffeners. In addition, the maximum size constraint and the overall volume constraint with a lower bound are introduced. The former ensures that the solid material takes the form of 'ribs' in the optimization results and the latter could meet the requirement that the design space is filled with lattice or solid material. Finally, numerical tests are conducted to demonstrate the detailed application process and validate the effectiveness of the proposed design method. This work provides an effective design tool for the application of additively manufactured lattice structures in thermo-elastic coupled load-bearing structures.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"208 ","pages":"Article 103962"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825001000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a layout optimization design method for thermo-elastic thin-walled structures with lattices and stiffeners in the framework of multi-material topology optimization, in which both the steady-state temperature field and mechanical loads are considered. Firstly, taking into account the design requirements, suitable lattice unit cells are chosen and their equivalent mechanical properties are obtained by the homogenization method. Thus, the candidate lattice unit cells are represented as corresponding virtual homogeneous materials. Meanwhile, the stiffeners are modelled with solid material. Afterwards, a multi-material thermo-elastic structural optimization formulation is established and solved iteratively through gradient-driven optimization algorithms to obtain the optimized layouts of the lattices and stiffeners. In addition, the maximum size constraint and the overall volume constraint with a lower bound are introduced. The former ensures that the solid material takes the form of 'ribs' in the optimization results and the latter could meet the requirement that the design space is filled with lattice or solid material. Finally, numerical tests are conducted to demonstrate the detailed application process and validate the effectiveness of the proposed design method. This work provides an effective design tool for the application of additively manufactured lattice structures in thermo-elastic coupled load-bearing structures.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.