SeeBand: a highly efficient, interactive tool for analyzing electronic transport data

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer
{"title":"SeeBand: a highly efficient, interactive tool for analyzing electronic transport data","authors":"Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer","doi":"10.1038/s41524-025-01645-y","DOIUrl":null,"url":null,"abstract":"<p><i>SeeBand</i> is an interactive tool for extracting microscopic material parameters by fitting temperature-dependent thermoelectric transport properties using Boltzmann transport theory. With real-time comparison between electronic band structures and transport data, it analyzes the Seebeck coefficient, resistivity, and Hall coefficient. Neural-network-assisted guesses and efficient fitting routines enable high-throughput processing of large datasets. <i>SeeBand</i> accelerates material design by allowing electronic band structure models to be derived directly from a single sample’s transport measurements.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"14 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01645-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

SeeBand is an interactive tool for extracting microscopic material parameters by fitting temperature-dependent thermoelectric transport properties using Boltzmann transport theory. With real-time comparison between electronic band structures and transport data, it analyzes the Seebeck coefficient, resistivity, and Hall coefficient. Neural-network-assisted guesses and efficient fitting routines enable high-throughput processing of large datasets. SeeBand accelerates material design by allowing electronic band structure models to be derived directly from a single sample’s transport measurements.

Abstract Image

SeeBand:用于分析电子传输数据的高效交互式工具
SeeBand是一个交互式工具,用于通过使用玻尔兹曼输运理论拟合温度相关的热电输运性质来提取微观材料参数。通过实时比较电子能带结构和输运数据,分析塞贝克系数、电阻率和霍尔系数。神经网络辅助猜测和有效的拟合例程使大数据集的高吞吐量处理成为可能。SeeBand通过允许电子带结构模型直接从单个样品的传输测量中导出,加速了材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信