Simon Gramatte, Olivier Politano, Noel Jakse, Claudia Cancellieri, Ivo Utke, Lars P. H. Jeurgens, Vladyslav Turlo
{"title":"Unveiling hydrogen chemical states in supersaturated amorphous alumina via machine learning-driven atomistic modeling","authors":"Simon Gramatte, Olivier Politano, Noel Jakse, Claudia Cancellieri, Ivo Utke, Lars P. H. Jeurgens, Vladyslav Turlo","doi":"10.1038/s41524-025-01676-5","DOIUrl":null,"url":null,"abstract":"<p>Advancing hydrogen-based technologies requires detailed characterization of hydrogen chemical states in amorphous materials. As experimental probing of hydrogen is challenging, interpretation in amorphous systems demands accurate structural models. Guided by experiments on atomic layer deposited alumina, a fast atomistic simulation technique is introduced using an ab initio-based machine learning interatomic potential to generate amorphous structures with realistic hydrogen contents. As such, the annealing of highly defective crystalline hydroxide structures at atomic layer deposition temperatures reproduces experimental density and structure, enabling accurate prediction of Al Auger parameter chemical shifts. Our analysis shows that higher hydrogen content favors OH ligands, whereas lower hydrogen content leads to diverse chemical states and hydrogen bonding, consistent with charge density and partial Bader charge calculations. Our approach offers a robust route to link hydrogen content with experimentally accessible chemical shifts, aiding the design of next-generation hydrogen-related materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"102 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01676-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advancing hydrogen-based technologies requires detailed characterization of hydrogen chemical states in amorphous materials. As experimental probing of hydrogen is challenging, interpretation in amorphous systems demands accurate structural models. Guided by experiments on atomic layer deposited alumina, a fast atomistic simulation technique is introduced using an ab initio-based machine learning interatomic potential to generate amorphous structures with realistic hydrogen contents. As such, the annealing of highly defective crystalline hydroxide structures at atomic layer deposition temperatures reproduces experimental density and structure, enabling accurate prediction of Al Auger parameter chemical shifts. Our analysis shows that higher hydrogen content favors OH ligands, whereas lower hydrogen content leads to diverse chemical states and hydrogen bonding, consistent with charge density and partial Bader charge calculations. Our approach offers a robust route to link hydrogen content with experimentally accessible chemical shifts, aiding the design of next-generation hydrogen-related materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.