Unveiling hydrogen chemical states in supersaturated amorphous alumina via machine learning-driven atomistic modeling

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Simon Gramatte, Olivier Politano, Noel Jakse, Claudia Cancellieri, Ivo Utke, Lars P. H. Jeurgens, Vladyslav Turlo
{"title":"Unveiling hydrogen chemical states in supersaturated amorphous alumina via machine learning-driven atomistic modeling","authors":"Simon Gramatte, Olivier Politano, Noel Jakse, Claudia Cancellieri, Ivo Utke, Lars P. H. Jeurgens, Vladyslav Turlo","doi":"10.1038/s41524-025-01676-5","DOIUrl":null,"url":null,"abstract":"<p>Advancing hydrogen-based technologies requires detailed characterization of hydrogen chemical states in amorphous materials. As experimental probing of hydrogen is challenging, interpretation in amorphous systems demands accurate structural models. Guided by experiments on atomic layer deposited alumina, a fast atomistic simulation technique is introduced using an ab initio-based machine learning interatomic potential to generate amorphous structures with realistic hydrogen contents. As such, the annealing of highly defective crystalline hydroxide structures at atomic layer deposition temperatures reproduces experimental density and structure, enabling accurate prediction of Al Auger parameter chemical shifts. Our analysis shows that higher hydrogen content favors OH ligands, whereas lower hydrogen content leads to diverse chemical states and hydrogen bonding, consistent with charge density and partial Bader charge calculations. Our approach offers a robust route to link hydrogen content with experimentally accessible chemical shifts, aiding the design of next-generation hydrogen-related materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"102 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01676-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing hydrogen-based technologies requires detailed characterization of hydrogen chemical states in amorphous materials. As experimental probing of hydrogen is challenging, interpretation in amorphous systems demands accurate structural models. Guided by experiments on atomic layer deposited alumina, a fast atomistic simulation technique is introduced using an ab initio-based machine learning interatomic potential to generate amorphous structures with realistic hydrogen contents. As such, the annealing of highly defective crystalline hydroxide structures at atomic layer deposition temperatures reproduces experimental density and structure, enabling accurate prediction of Al Auger parameter chemical shifts. Our analysis shows that higher hydrogen content favors OH ligands, whereas lower hydrogen content leads to diverse chemical states and hydrogen bonding, consistent with charge density and partial Bader charge calculations. Our approach offers a robust route to link hydrogen content with experimentally accessible chemical shifts, aiding the design of next-generation hydrogen-related materials.

Abstract Image

通过机器学习驱动的原子模型揭示过饱和非晶氧化铝中氢的化学状态
推进氢基技术需要详细表征非晶材料中的氢化学状态。由于氢的实验探测具有挑战性,在非晶系统中解释需要精确的结构模型。在原子层沉积氧化铝实验的指导下,介绍了一种基于从头算的机器学习原子间势的快速原子模拟技术,以生成具有真实氢含量的非晶结构。因此,在原子层沉积温度下对高度缺陷的氢氧化物晶体结构进行退火可以再现实验密度和结构,从而能够准确预测Al俄歇参数的化学位移。我们的分析表明,较高的氢含量有利于OH配体,而较低的氢含量会导致不同的化学状态和氢键,这与电荷密度和部分Bader电荷计算一致。我们的方法提供了一条将氢含量与实验可获得的化学变化联系起来的可靠途径,有助于设计下一代氢相关材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信