SARM1 activation induces reversible mitochondrial dysfunction and can be prevented in human neurons by antisense oligonucleotides

IF 5.1 2区 医学 Q1 NEUROSCIENCES
Andrea Loreto , Kaitlyn M.L. Cramb , Lucy A. McDermott , Christina Antoniou , Ilenia Cirilli , Maria Claudia Caiazza , Elisa Merlini , Peter Arthur-Farraj , W. Daniel du Preez , Elliot D. Mock , Hien T. Zhao , David L. Bennett , Giuseppe Orsomando , Michael P. Coleman , Richard Wade-Martins
{"title":"SARM1 activation induces reversible mitochondrial dysfunction and can be prevented in human neurons by antisense oligonucleotides","authors":"Andrea Loreto ,&nbsp;Kaitlyn M.L. Cramb ,&nbsp;Lucy A. McDermott ,&nbsp;Christina Antoniou ,&nbsp;Ilenia Cirilli ,&nbsp;Maria Claudia Caiazza ,&nbsp;Elisa Merlini ,&nbsp;Peter Arthur-Farraj ,&nbsp;W. Daniel du Preez ,&nbsp;Elliot D. Mock ,&nbsp;Hien T. Zhao ,&nbsp;David L. Bennett ,&nbsp;Giuseppe Orsomando ,&nbsp;Michael P. Coleman ,&nbsp;Richard Wade-Martins","doi":"10.1016/j.nbd.2025.106986","DOIUrl":null,"url":null,"abstract":"<div><div>SARM1 is a key regulator of a conserved program of axon degeneration increasingly linked to human neurodegenerative diseases. Pathological SARM1 activation causes rapid NAD consumption, disrupting cellular homeostasis and leading to axon degeneration. In this study, we develop antisense oligonucleotides (ASOs) targeting human SARM1, demonstrating robust neuroprotection against morphological, metabolic, and mitochondrial impairment in human iPSC-derived dopamine neurons induced by the lethal neurotoxin vacor, a potent SARM1 activator. Furthermore, our findings reveal that axon fragmentation can be prevented, and mitochondrial dysfunction reversed using the NAD precursor nicotinamide, a form of vitamin B<sub>3</sub>, even after SARM1 activation has occurred, when neurons are already unhealthy. This research identifies ASOs as a promising therapeutic strategy to block SARM1, and provides an extensive characterisation and further mechanistic insights that demonstrate the reversibility of SARM1 toxicity in human neurons. It also identifies the SARM1 activator vacor as a specific and reversible neuroablative agent in human neurons.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"213 ","pages":"Article 106986"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125002025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

SARM1 is a key regulator of a conserved program of axon degeneration increasingly linked to human neurodegenerative diseases. Pathological SARM1 activation causes rapid NAD consumption, disrupting cellular homeostasis and leading to axon degeneration. In this study, we develop antisense oligonucleotides (ASOs) targeting human SARM1, demonstrating robust neuroprotection against morphological, metabolic, and mitochondrial impairment in human iPSC-derived dopamine neurons induced by the lethal neurotoxin vacor, a potent SARM1 activator. Furthermore, our findings reveal that axon fragmentation can be prevented, and mitochondrial dysfunction reversed using the NAD precursor nicotinamide, a form of vitamin B3, even after SARM1 activation has occurred, when neurons are already unhealthy. This research identifies ASOs as a promising therapeutic strategy to block SARM1, and provides an extensive characterisation and further mechanistic insights that demonstrate the reversibility of SARM1 toxicity in human neurons. It also identifies the SARM1 activator vacor as a specific and reversible neuroablative agent in human neurons.
SARM1激活可诱导可逆的线粒体功能障碍,并可通过反义寡核苷酸在人类神经元中预防。
SARM1是轴突变性保守程序的关键调控因子,与人类神经退行性疾病的关系日益密切。病理性SARM1激活导致NAD快速消耗,破坏细胞稳态并导致轴突变性。在这项研究中,我们开发了针对人类SARM1的反义寡核苷酸(ASOs),证明了对由致命的神经毒素vacor(一种有效的SARM1激活剂)诱导的人类ipsc衍生的多巴胺神经元的形态学、代谢和线粒体损伤具有强大的神经保护作用。此外,我们的研究结果表明,即使在SARM1激活发生后,当神经元已经不健康时,也可以使用NAD前体烟酰胺(维生素B3的一种形式)来预防轴突断裂,并逆转线粒体功能障碍。本研究确定ASOs是阻断SARM1的一种有前景的治疗策略,并提供了广泛的表征和进一步的机制见解,证明了SARM1毒性在人类神经元中的可逆性。它还确定了SARM1激活因子vacor是人类神经元中特异性和可逆的神经消融剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信