How Have Animal Models Increased our Understanding of Human Myopia?

IF 4.7 2区 医学 Q1 OPHTHALMOLOGY
Mark A Bullimore
{"title":"How Have Animal Models Increased our Understanding of Human Myopia?","authors":"Mark A Bullimore","doi":"10.1167/iovs.66.7.2","DOIUrl":null,"url":null,"abstract":"<p><p>The extent to which animal models of refractive development have increased our understanding of human myopia is reviewed. During postnatal development refractive errors converge on emmetropia in young animals but form deprivation disrupts this process. Their eyes compensate for optically imposed myopic or hyperopic defocus and recover from the induced refractive error when form deprivation or optical defocus is removed. All of these features have, to some extent, been observed in young children. The lens paradigm has been further leveraged in animals to investigate the influence of competing optical signals on refractive error. These, in turn, have informed and validated certain myopia control technologies. Short-term choroidal thickening and thinning can be induced by positive and negative lenses, respectively, in both animals and humans, although these changes are much smaller and more variable in the latter. Finally, inconsistencies among animal models, inconsistencies between animal models and human myopia, and knowledge gaps and opportunities are discussed.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 7","pages":"2"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.7.2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extent to which animal models of refractive development have increased our understanding of human myopia is reviewed. During postnatal development refractive errors converge on emmetropia in young animals but form deprivation disrupts this process. Their eyes compensate for optically imposed myopic or hyperopic defocus and recover from the induced refractive error when form deprivation or optical defocus is removed. All of these features have, to some extent, been observed in young children. The lens paradigm has been further leveraged in animals to investigate the influence of competing optical signals on refractive error. These, in turn, have informed and validated certain myopia control technologies. Short-term choroidal thickening and thinning can be induced by positive and negative lenses, respectively, in both animals and humans, although these changes are much smaller and more variable in the latter. Finally, inconsistencies among animal models, inconsistencies between animal models and human myopia, and knowledge gaps and opportunities are discussed.

动物模型如何增加我们对人类近视的了解?
动物屈光发育模型在多大程度上增加了我们对人类近视的认识。在出生后的发育过程中,年轻动物的屈光不正集中在远视上,但形态剥夺破坏了这一过程。他们的眼睛补偿了光学强加的近视或远视离焦,并在形状剥夺或光学离焦被移除后从诱发的屈光不正中恢复。在某种程度上,所有这些特征都在幼儿身上观察到。在动物实验中,晶状体模型被进一步用于研究竞争光信号对屈光不正的影响。这些,反过来又为某些近视控制技术提供了信息和验证。在动物和人类中,正晶状体和负晶状体分别可引起短期脉络膜增厚和变薄,尽管后者的变化要小得多,变化也更大。最后,讨论了动物模型之间的不一致性、动物模型与人类近视之间的不一致性以及知识缺口和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
4.50%
发文量
339
审稿时长
1 months
期刊介绍: Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信