{"title":"Revolutionizing Antibiotic Delivery: Harnessing 3D-Printing Technology to Combat Bacterial Resistance.","authors":"Shubham Singh, Mohit Kumar, Deeksha Choudhary, Dikshant -, Devesh Kumar, Shruti Chopra, Amit Bhatia","doi":"10.2174/0113816128365632250524160128","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance poses a significant threat to public health, rendering many life-saving medications ineffective as pathogenic microorganisms develop resistance spontaneously. This results in infections that are difficult to treat, with limited or no treatment options. Traditionally, addressing this challenge involves developing new pharmaceuticals, a lengthy and costly process. However, a more efficient approach lies in improving drug delivery methods, which can be quicker and more economical. In recent years, 3D printing technology has emerged as a groundbreaking, industry-accepted technique that enables the affordable, simple, and rapid manufacturing of pharmaceuticals. This technology supports iterative design-build-test cycles, facilitating the development of a wide range of products, from simple 3D-printed tablets to complex medical devices, tailored for diverse applications. This article explores innovative strategies in the search for novel antibiotics, the development of more effective preventative measures, and, crucially, a deeper understanding of the ecology of antibiotics and antibiotic resistance. It provides an overview of these issues' historical and current status, emphasizing the potential of 3D printing to address antibiotic resistance. Additionally, it discusses how to expand conceptual frameworks in response to recent advancements in chemotherapy, antimicrobials, and antibiotic resistance. The article highlights various notable efforts in utilizing 3D printing to develop antimicrobial dosage forms and medical devices, offering insights into future possibilities.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128365632250524160128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance poses a significant threat to public health, rendering many life-saving medications ineffective as pathogenic microorganisms develop resistance spontaneously. This results in infections that are difficult to treat, with limited or no treatment options. Traditionally, addressing this challenge involves developing new pharmaceuticals, a lengthy and costly process. However, a more efficient approach lies in improving drug delivery methods, which can be quicker and more economical. In recent years, 3D printing technology has emerged as a groundbreaking, industry-accepted technique that enables the affordable, simple, and rapid manufacturing of pharmaceuticals. This technology supports iterative design-build-test cycles, facilitating the development of a wide range of products, from simple 3D-printed tablets to complex medical devices, tailored for diverse applications. This article explores innovative strategies in the search for novel antibiotics, the development of more effective preventative measures, and, crucially, a deeper understanding of the ecology of antibiotics and antibiotic resistance. It provides an overview of these issues' historical and current status, emphasizing the potential of 3D printing to address antibiotic resistance. Additionally, it discusses how to expand conceptual frameworks in response to recent advancements in chemotherapy, antimicrobials, and antibiotic resistance. The article highlights various notable efforts in utilizing 3D printing to develop antimicrobial dosage forms and medical devices, offering insights into future possibilities.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.