Encapsulation of lutein in nanoemulsions: Comparative evaluation of chickpea and soy protein isolates on physicochemical stability, antioxidant activity, and rheological properties
Farhang Hameed Awlqadr , Babak Ghanbarzadeh , Ammar B. Altemimi , Khaled Arab , Saeed Dadashi , Akram Pezeshki , Mohammad Ali Hesarinejad , Tarek Gamal Abedelmaksoud
{"title":"Encapsulation of lutein in nanoemulsions: Comparative evaluation of chickpea and soy protein isolates on physicochemical stability, antioxidant activity, and rheological properties","authors":"Farhang Hameed Awlqadr , Babak Ghanbarzadeh , Ammar B. Altemimi , Khaled Arab , Saeed Dadashi , Akram Pezeshki , Mohammad Ali Hesarinejad , Tarek Gamal Abedelmaksoud","doi":"10.1016/j.fochx.2025.102623","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoemulsions have emerged as advanced systems for encapsulating bioactive compounds, offering enhanced stability, bioavailability, and functionality in various applications. This study evaluates the potential of chickpea protein isolate (CPI) and soy protein isolate (SPI) as emulsifiers in the preparation and stabilization of lutein-loaded nanoemulsions. The study looked at CPI and SPI and how each of them interacted with the physical and chemical properties, antioxidant activity, and stability of proteins at different concentration levels (1 %, 3 %, and 5 %). The data showed that CPI was better than SPI in terms of equal sizing, zeta potential, and long-term stability. Nanoemulsions made using 3 % CPI gave the best results showing optimal particle size, antioxidant retention, and rheological stability. CPI-stabilized emulsions, which were the result of strong thixotropic behavior higher hysteresis loop areas and more robust hydrogen bonding and cohesive interfacial layer, were the better products. In contrast, SPI-stabilized emulsions were less efficient because of their reliance on hydrophobic interactions. In addition, lutein encapsulation was a mean to increase the stability of emulsions and also to boost up the antioxidant efficiency against blank formulations. The results show the excellent emulsifying capabilities of CPI and the application of bioactive ingredients in functional foods and nutraceuticals that benefit the bioavailability and function of lutein. The findings can pave the way for the utilization of plant-based proteins for eco-friendly nanoemulsion technologies to be used in bioactive delivery.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"28 ","pages":"Article 102623"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525004705","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoemulsions have emerged as advanced systems for encapsulating bioactive compounds, offering enhanced stability, bioavailability, and functionality in various applications. This study evaluates the potential of chickpea protein isolate (CPI) and soy protein isolate (SPI) as emulsifiers in the preparation and stabilization of lutein-loaded nanoemulsions. The study looked at CPI and SPI and how each of them interacted with the physical and chemical properties, antioxidant activity, and stability of proteins at different concentration levels (1 %, 3 %, and 5 %). The data showed that CPI was better than SPI in terms of equal sizing, zeta potential, and long-term stability. Nanoemulsions made using 3 % CPI gave the best results showing optimal particle size, antioxidant retention, and rheological stability. CPI-stabilized emulsions, which were the result of strong thixotropic behavior higher hysteresis loop areas and more robust hydrogen bonding and cohesive interfacial layer, were the better products. In contrast, SPI-stabilized emulsions were less efficient because of their reliance on hydrophobic interactions. In addition, lutein encapsulation was a mean to increase the stability of emulsions and also to boost up the antioxidant efficiency against blank formulations. The results show the excellent emulsifying capabilities of CPI and the application of bioactive ingredients in functional foods and nutraceuticals that benefit the bioavailability and function of lutein. The findings can pave the way for the utilization of plant-based proteins for eco-friendly nanoemulsion technologies to be used in bioactive delivery.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.