Rattling effect mechanism on the temperature stability of low-sintered Ca1–x(Li1/2Eu1/2)xWO4 microwave dielectric ceramics for dielectric resonant antenna applications
Qingfeng Li, Jie Li, Ying Tang, Huaicheng Xiang, Di Zhou, Kaixin Song, Liang Fang
{"title":"Rattling effect mechanism on the temperature stability of low-sintered Ca1–x(Li1/2Eu1/2)xWO4 microwave dielectric ceramics for dielectric resonant antenna applications","authors":"Qingfeng Li, Jie Li, Ying Tang, Huaicheng Xiang, Di Zhou, Kaixin Song, Liang Fang","doi":"10.1016/j.jmat.2025.101094","DOIUrl":null,"url":null,"abstract":"The low dielectric constant (<em>ε</em><sub>r</sub> < 15) is the key to improving the signal transmission speed of microwave communication devices. However, the resonant frequency temperature coefficient (<em>τ</em><sub>f</sub>) of most low-<em>ε</em><sub>r</sub> microwave dielectric ceramics is usually negative. Aiming to modify the large negative <em>τ</em><sub>f</sub> of scheelite CaWO<sub>4</sub> and explore the underlying mechanism between the structure and microwave dielectric properties, a series of Ca<sub>1–<em>x</em></sub>(Li<sub>1/2</sub>Eu<sub>1/2</sub>)<sub><em>x</em></sub>WO<sub>4</sub> (<em>x</em> = 0.1−1.0) (CLEWO<sub><em>x</em></sub>) ceramics were prepared at low sintering temperatures (750−875 °C). The <em>ε</em><sub>r</sub> increased from 10.46 to 18.55, and the <em>Q</em>× <em>f</em> decreased from 39,032 GHz to 7425 GHz, mainly due to the enhanced rattling effect of Li<sup>+</sup>. The <em>τ</em><sub>f</sub> rapidly increased from negative (–19.91×10<sup>−6</sup> °C<sup>−1</sup>) to abnormally positive (+162.15×10<sup>−6</sup> °C<sup>−1</sup>), influenced by the reduced temperature coefficient of ion polarizability (<em>τ</em><sub>αm</sub>) caused by the rattling Li<sup>+</sup> cation. The CLEWO<sub>0.15</sub> sample has good comprehensive performance (<em>ε</em><sub>r</sub> = 12.28, <em>Q×f</em> = 28,027 GHz, and <em>τ</em><sub>f</sub> = –0.5×10<sup>−6</sup> °C<sup>−1</sup>) and compatibility with the Ag electrode, showing the potential of LTCC applications. Additionally, a dielectric resonator antenna based on CLEWO<sub>0.15</sub> ceramic was designed with a bandwidth of 254 MHz at 4.504−4.758 GHz and a gain of 4.87 dBi at 4.62 GHz, indicating that CLEWO<sub>0.15</sub> may be a potential candidate for dielectric resonator antennas.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"62 1","pages":"101094"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101094","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The low dielectric constant (εr < 15) is the key to improving the signal transmission speed of microwave communication devices. However, the resonant frequency temperature coefficient (τf) of most low-εr microwave dielectric ceramics is usually negative. Aiming to modify the large negative τf of scheelite CaWO4 and explore the underlying mechanism between the structure and microwave dielectric properties, a series of Ca1–x(Li1/2Eu1/2)xWO4 (x = 0.1−1.0) (CLEWOx) ceramics were prepared at low sintering temperatures (750−875 °C). The εr increased from 10.46 to 18.55, and the Q× f decreased from 39,032 GHz to 7425 GHz, mainly due to the enhanced rattling effect of Li+. The τf rapidly increased from negative (–19.91×10−6 °C−1) to abnormally positive (+162.15×10−6 °C−1), influenced by the reduced temperature coefficient of ion polarizability (ταm) caused by the rattling Li+ cation. The CLEWO0.15 sample has good comprehensive performance (εr = 12.28, Q×f = 28,027 GHz, and τf = –0.5×10−6 °C−1) and compatibility with the Ag electrode, showing the potential of LTCC applications. Additionally, a dielectric resonator antenna based on CLEWO0.15 ceramic was designed with a bandwidth of 254 MHz at 4.504−4.758 GHz and a gain of 4.87 dBi at 4.62 GHz, indicating that CLEWO0.15 may be a potential candidate for dielectric resonator antennas.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.