Linus Hägg, Sean Conroy, Göran Ericsson, Zamir Ghani, Luca Giacomelli, Daniele Marocco, Alberto Milocco, Marco Riva, Benjamin Vingren, Gustav Robertson, Jacob Eriksson, Erik Andersson Sundén
{"title":"Estimating the neutron yield in a deuterium-tritium plasma with the JET neutron camera.","authors":"Linus Hägg, Sean Conroy, Göran Ericsson, Zamir Ghani, Luca Giacomelli, Daniele Marocco, Alberto Milocco, Marco Riva, Benjamin Vingren, Gustav Robertson, Jacob Eriksson, Erik Andersson Sundén","doi":"10.1063/5.0231639","DOIUrl":null,"url":null,"abstract":"<p><p>The JET neutron camera is used to monitor a 2D profile of the neutron emission from the plasma, using 19 sightlines with plastic scintillators suited for measuring neutrons from the D + T → n + 4He (DT) reaction. This paper describes an independent, first-principles physics method for estimating the volume integrated DT neutron yield with the neutron camera. This is performed for a selection of shots from the two recent DT campaigns at JET, the DTE2 and DTE3 JET campaigns. It covers the data reduction methods from a light yield calibration of the scintillators to treatment of pile-up, which is prevalent during high yield DT experiments. Several models of the camera geometry are used to account for scattering and transmission effects in the neutron transport. The neutron yield is estimated using models of the neutron emission profile, which are fitted to measurement data. The neutron yield estimates from this method are compared to corresponding estimates from the JET fission chambers. Our estimates with the neutron camera are on average 34% and 41% higher than the fission chamber estimates for DTE2 and DTE3, respectively. The reasons for the discrepancies between the two systems are presently unknown and prompt further investigation. In this paper, we detail the methods used to reach the neutron yield estimate from the neutron camera, along with their strengths, weaknesses, and potential points of failure. This method is an evolution of an earlier work that estimated the deuterium-deuterium neutron yield using similar methods.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0231639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The JET neutron camera is used to monitor a 2D profile of the neutron emission from the plasma, using 19 sightlines with plastic scintillators suited for measuring neutrons from the D + T → n + 4He (DT) reaction. This paper describes an independent, first-principles physics method for estimating the volume integrated DT neutron yield with the neutron camera. This is performed for a selection of shots from the two recent DT campaigns at JET, the DTE2 and DTE3 JET campaigns. It covers the data reduction methods from a light yield calibration of the scintillators to treatment of pile-up, which is prevalent during high yield DT experiments. Several models of the camera geometry are used to account for scattering and transmission effects in the neutron transport. The neutron yield is estimated using models of the neutron emission profile, which are fitted to measurement data. The neutron yield estimates from this method are compared to corresponding estimates from the JET fission chambers. Our estimates with the neutron camera are on average 34% and 41% higher than the fission chamber estimates for DTE2 and DTE3, respectively. The reasons for the discrepancies between the two systems are presently unknown and prompt further investigation. In this paper, we detail the methods used to reach the neutron yield estimate from the neutron camera, along with their strengths, weaknesses, and potential points of failure. This method is an evolution of an earlier work that estimated the deuterium-deuterium neutron yield using similar methods.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.