Fernanda Furlan Goncalves Dias, Bianca Ferraz Teixeira, Ameer Y. Taha, Juliana Maria Leite Nobrega de Moura Bell
{"title":"Integrated impact of environmentally friendly extraction and recovery methods on almond oil quality: Insights from a lipidomic perspective","authors":"Fernanda Furlan Goncalves Dias, Bianca Ferraz Teixeira, Ameer Y. Taha, Juliana Maria Leite Nobrega de Moura Bell","doi":"10.1002/aocs.12941","DOIUrl":null,"url":null,"abstract":"<p>Although aqueous and enzymatic extractions are solvent-free alternatives for extracting oil and proteins from almond flour, most of the extracted oil becomes entrapped in an emulsion and needs demulsification for recovery. To assess how extraction and demulsification methods impact yields and quality, a lipidomic approach was used to investigate the effects of aqueous and enzymatic extractions processes and recovery strategies, including pH-shift and protease addition, on almond oil quality. Liquid chromatography-mass spectrometry, conventional oxidation markers (peroxide value, p-anisidine), fatty acid profile, lipid class, total phenolic content and antioxidant activity were employed to determine the combined impact of extraction and recovery methods on lipid quality and composition. Peroxide value (1.8–2.0 mEq/kg oil), p-anisidine (0.1–0.4), and fatty acid composition of the oils (18:1 72%–75%, 18:2 22%–25%, 16:0 4%–5%) showed no significant changes based on extraction and recovery methods. However, oxylipin analysis demonstrated that the solvent-extracted oil had higher levels of 13-hydroxyoctadecadienoic acid (13-HODE) and 12(13)-epoxyoctadecenoic acid (12(13)-EpOME) compared to aqueous and enzymatically extracted oils, regardless of the demulsification method. Additionally, the solvent-extracted oil exhibited lower phenolic content and antioxidant capacity. This work provides valuable insights into how environmentally friendly extraction and recovery methods impact almond oil quality, contributing to processing optimization.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 6","pages":"995-1004"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12941","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Although aqueous and enzymatic extractions are solvent-free alternatives for extracting oil and proteins from almond flour, most of the extracted oil becomes entrapped in an emulsion and needs demulsification for recovery. To assess how extraction and demulsification methods impact yields and quality, a lipidomic approach was used to investigate the effects of aqueous and enzymatic extractions processes and recovery strategies, including pH-shift and protease addition, on almond oil quality. Liquid chromatography-mass spectrometry, conventional oxidation markers (peroxide value, p-anisidine), fatty acid profile, lipid class, total phenolic content and antioxidant activity were employed to determine the combined impact of extraction and recovery methods on lipid quality and composition. Peroxide value (1.8–2.0 mEq/kg oil), p-anisidine (0.1–0.4), and fatty acid composition of the oils (18:1 72%–75%, 18:2 22%–25%, 16:0 4%–5%) showed no significant changes based on extraction and recovery methods. However, oxylipin analysis demonstrated that the solvent-extracted oil had higher levels of 13-hydroxyoctadecadienoic acid (13-HODE) and 12(13)-epoxyoctadecenoic acid (12(13)-EpOME) compared to aqueous and enzymatically extracted oils, regardless of the demulsification method. Additionally, the solvent-extracted oil exhibited lower phenolic content and antioxidant capacity. This work provides valuable insights into how environmentally friendly extraction and recovery methods impact almond oil quality, contributing to processing optimization.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.