Ripley Vaughan, Vermont Dia, Elizabeth Eckelkamp, Tong Wang
{"title":"Phospholipids precipitation from cheese whey","authors":"Ripley Vaughan, Vermont Dia, Elizabeth Eckelkamp, Tong Wang","doi":"10.1002/aocs.12945","DOIUrl":null,"url":null,"abstract":"<p>Whey, the largest co-product source of the dairy industry, contains highly valued components such as phospholipids. For this work, cheddar cheese whey's phospholipids were precipitated using thermocalcic aggregation. The impact of calcium acetate concentration, pH, and temperature as processing conditions was evaluated. The results showed that the highest recovery of phospholipids was achieved at pH 6.5, a calcium acetate concentration of 50 mM, and at a temperature of 60 °C. Calcium acetate concentration and pH were statistically significant factors (<i>p</i> < 0.05), but temperature was not. For all treatments, the majority (95%–98%) of the protein remained in the supernatant. Under the identified best conditions, up to 92% of the phospholipids of the milk fat globule membrane were precipitated in the pellet, while 96% of the proteins remained in the supernatant. The salt recovery, that is, in the precipitate, was 53%, but decreasing the amount of salt used would result in incomplete recovery of the phospholipids. Gel electrophoresis showed that the majority of the globule membrane proteins were precipitated into the pellet, while the supernatant only contained major whey proteins. This procedure demonstrates a simple and cost-effective method to utilize cheese whey for phospholipids precipitation that can be further processed into a value-added food or nutraceutical ingredient. This technique, after more fully optimized, would allow for easy implementation in small cheese production facilities.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 6","pages":"1005-1014"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12945","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Whey, the largest co-product source of the dairy industry, contains highly valued components such as phospholipids. For this work, cheddar cheese whey's phospholipids were precipitated using thermocalcic aggregation. The impact of calcium acetate concentration, pH, and temperature as processing conditions was evaluated. The results showed that the highest recovery of phospholipids was achieved at pH 6.5, a calcium acetate concentration of 50 mM, and at a temperature of 60 °C. Calcium acetate concentration and pH were statistically significant factors (p < 0.05), but temperature was not. For all treatments, the majority (95%–98%) of the protein remained in the supernatant. Under the identified best conditions, up to 92% of the phospholipids of the milk fat globule membrane were precipitated in the pellet, while 96% of the proteins remained in the supernatant. The salt recovery, that is, in the precipitate, was 53%, but decreasing the amount of salt used would result in incomplete recovery of the phospholipids. Gel electrophoresis showed that the majority of the globule membrane proteins were precipitated into the pellet, while the supernatant only contained major whey proteins. This procedure demonstrates a simple and cost-effective method to utilize cheese whey for phospholipids precipitation that can be further processed into a value-added food or nutraceutical ingredient. This technique, after more fully optimized, would allow for easy implementation in small cheese production facilities.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.