Stereolithography 3D printing method for multi-material hydrogel 2D photo-patterning in a microfluidic chip

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Assie-Souleille, L. Seguier, D. Gauchard, I. Drobecq, B. Franc, L. Malaquin, J. Foncy
{"title":"Stereolithography 3D printing method for multi-material hydrogel 2D photo-patterning in a microfluidic chip","authors":"S. Assie-Souleille,&nbsp;L. Seguier,&nbsp;D. Gauchard,&nbsp;I. Drobecq,&nbsp;B. Franc,&nbsp;L. Malaquin,&nbsp;J. Foncy","doi":"10.1016/j.mne.2025.100301","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel and straightforward method using a standard stereolithography (SLA) 3D printer for high-resolution (20 μm x-y resolution), multi-material 2D hydrogel photo-patterning directly within a microfluidic chip. The process involves sequential injections of photosensitive hydrogel into a transparent microfluidic chip coupled with sequential direct laser writing by the printer through point-by-point photopolymerization. Our approach integrates a custom miniaturized syringe pump system into the SLA printer, thereby enabling fluid management and sequential injection of different photosensitive hydrogels directly into the microfluidic environment between each laser writing sequence. This technique enables the fabrication of intricate, multi-material hydrogel patterns (e.g., PEGDA and HAMA) with high spatial resolution over areas spanning several square millimeters. Future developments will focus on expanding the range of biomaterials and incorporating cell-laden hydrogels to facilitate the creation of biologically relevant microenvironments on chip.</div><div>This study opens new possibilities for high-resolution, multi-material hydrogel patterning in microfluidics and offers a valuable platform for advancing research in microsystems engineering.</div></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"27 ","pages":"Article 100301"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007225000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel and straightforward method using a standard stereolithography (SLA) 3D printer for high-resolution (20 μm x-y resolution), multi-material 2D hydrogel photo-patterning directly within a microfluidic chip. The process involves sequential injections of photosensitive hydrogel into a transparent microfluidic chip coupled with sequential direct laser writing by the printer through point-by-point photopolymerization. Our approach integrates a custom miniaturized syringe pump system into the SLA printer, thereby enabling fluid management and sequential injection of different photosensitive hydrogels directly into the microfluidic environment between each laser writing sequence. This technique enables the fabrication of intricate, multi-material hydrogel patterns (e.g., PEGDA and HAMA) with high spatial resolution over areas spanning several square millimeters. Future developments will focus on expanding the range of biomaterials and incorporating cell-laden hydrogels to facilitate the creation of biologically relevant microenvironments on chip.
This study opens new possibilities for high-resolution, multi-material hydrogel patterning in microfluidics and offers a valuable platform for advancing research in microsystems engineering.
微流控芯片中多材料水凝胶二维图像的立体光刻3D打印方法
我们提出了一种新颖而直接的方法,使用标准立体光刻(SLA) 3D打印机进行高分辨率(20 μm x-y分辨率),直接在微流控芯片内进行多材料2D水凝胶照片图像化。该过程包括将光敏水凝胶依次注射到透明微流控芯片中,并通过逐点光聚合由打印机进行顺序直接激光书写。我们的方法将定制的微型注射泵系统集成到SLA打印机中,从而实现流体管理和在每个激光书写序列之间将不同的光敏水凝胶直接注射到微流体环境中。该技术能够制造复杂的多材料水凝胶图案(例如,PEGDA和HAMA),在跨越几平方毫米的区域内具有高空间分辨率。未来的发展将集中在扩大生物材料的范围和结合细胞负载的水凝胶,以促进在芯片上创建生物相关的微环境。该研究为微流体中高分辨率、多材料水凝胶图谱的研究开辟了新的可能性,并为推进微系统工程研究提供了一个有价值的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信