Kawita Chumphoochai, Sukrit Promtang, Pawanrat Chalorak, Preeyanuch Manohong, Nakorn Niamnont, Montakan Tamtin, Prasert Sobhon, Simon Tuck, Krai Meemon
{"title":"Halymenia durvillei Extracts Exert Antiobesity Effects by Targeting hosl-1-Mediated Lipolysis in a Glucose-Induced Caenorhabditis elegans Model","authors":"Kawita Chumphoochai, Sukrit Promtang, Pawanrat Chalorak, Preeyanuch Manohong, Nakorn Niamnont, Montakan Tamtin, Prasert Sobhon, Simon Tuck, Krai Meemon","doi":"10.1002/efd2.70065","DOIUrl":null,"url":null,"abstract":"<p>The antiobesity effect of extracts from the marine algae, <i>Halymenia durvillei</i> (HD), was investigated in a glucose-induced <i>Caenorhabditis elegans</i> model of obesity. Total fat accumulation, triglyceride levels, lifespan, intracellular ROS levels, and the potential mechanism of action of <i>H. durvillei</i> extracts were examined. The present study demonstrated that the ethanol fraction of <i>H. durvillei</i> (HDET) and ethyl acetate fraction of <i>H. durvillei</i> (HDEA) extracts led to a significant reduction in fat accumulation, triglyceride levels, the GFP-labeled <i>dhs-3</i>, a marker for lipid droplets, and the intracellular ROS levels. <i>H. durvillei</i> extracts significantly extended the lifespan of glucose-induced worms. In addition, the mRNA expression of lipolysis-related genes, <i>atgl-1</i> and <i>hosl-1</i>, showed significant upregulation following treatment with <i>H. durvillei</i> extracts. This finding was supported by RNA interference (RNAi) of <i>atgl-1</i> and <i>hosl-1</i>, which resulted in disrupting the effect of the <i>H. durvillei</i> extracts on lowering fat accumulation. Furthermore, transcriptomic analysis revealed diverse metabolic activities in glucose-induced worms treated with HDEA, affecting fatty acid metabolism. The results suggested that these extracts provide an antiobesity effect mediated through the lipolysis genes, <i>atgl-1</i> and <i>hosl-1</i>. <i>H. durvillei</i>-derived extracts may offer valuable insights as functional food ingredients for use in the prevention of obesity.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":"6 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.70065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://iadns.onlinelibrary.wiley.com/doi/10.1002/efd2.70065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antiobesity effect of extracts from the marine algae, Halymenia durvillei (HD), was investigated in a glucose-induced Caenorhabditis elegans model of obesity. Total fat accumulation, triglyceride levels, lifespan, intracellular ROS levels, and the potential mechanism of action of H. durvillei extracts were examined. The present study demonstrated that the ethanol fraction of H. durvillei (HDET) and ethyl acetate fraction of H. durvillei (HDEA) extracts led to a significant reduction in fat accumulation, triglyceride levels, the GFP-labeled dhs-3, a marker for lipid droplets, and the intracellular ROS levels. H. durvillei extracts significantly extended the lifespan of glucose-induced worms. In addition, the mRNA expression of lipolysis-related genes, atgl-1 and hosl-1, showed significant upregulation following treatment with H. durvillei extracts. This finding was supported by RNA interference (RNAi) of atgl-1 and hosl-1, which resulted in disrupting the effect of the H. durvillei extracts on lowering fat accumulation. Furthermore, transcriptomic analysis revealed diverse metabolic activities in glucose-induced worms treated with HDEA, affecting fatty acid metabolism. The results suggested that these extracts provide an antiobesity effect mediated through the lipolysis genes, atgl-1 and hosl-1. H. durvillei-derived extracts may offer valuable insights as functional food ingredients for use in the prevention of obesity.
期刊介绍:
eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health.
The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following:
● Food chemistry
● Nutrition
● Food safety
● Food and health
● Food technology and sustainability
● Food processing
● Sensory and consumer science
● Food microbiology
● Food toxicology
● Food packaging
● Food security
● Healthy foods
● Super foods
● Food science (general)