{"title":"Hybrid material topology optimization of solid-lattice structures for natural frequency maximization","authors":"Yuhan Liu, Zhen Liu, Yedan Li, Wei-Zhi Luo, Liang Xia","doi":"10.1016/j.advengsoft.2025.103961","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a topology optimization design approach for hybrid materials used to generate solid-lattice structures. Specifically, the approach aims to maximize the natural frequencies of hybrid structures by optimizing the topological distribution of solid and lattice materials, as well as the lattice relative density. For this purpose, a hybrid material interpolation model is developed. In this approach, the modal assurance criterion (MAC) is applied to optimize the target-order natural frequency accurately. Additionally, a hybrid structure post-processing framework based on the signed distance field (SDF) is proposed. This framework adaptively refines the lattice resolution at model boundaries, ensuring geometric integrity. Moreover, a circular geometry transition strategy is employed to improve structural connectivity, which significantly reduces model errors in non-transition regions. 2D and 3D numerical examples demonstrate the proposed method’s effectiveness in maximizing the natural frequency of hybrid structures. In particular, the dynamic performance of hybrid structures surpasses that of pure solid structures under multiple mass loading cases.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"208 ","pages":"Article 103961"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825000997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a topology optimization design approach for hybrid materials used to generate solid-lattice structures. Specifically, the approach aims to maximize the natural frequencies of hybrid structures by optimizing the topological distribution of solid and lattice materials, as well as the lattice relative density. For this purpose, a hybrid material interpolation model is developed. In this approach, the modal assurance criterion (MAC) is applied to optimize the target-order natural frequency accurately. Additionally, a hybrid structure post-processing framework based on the signed distance field (SDF) is proposed. This framework adaptively refines the lattice resolution at model boundaries, ensuring geometric integrity. Moreover, a circular geometry transition strategy is employed to improve structural connectivity, which significantly reduces model errors in non-transition regions. 2D and 3D numerical examples demonstrate the proposed method’s effectiveness in maximizing the natural frequency of hybrid structures. In particular, the dynamic performance of hybrid structures surpasses that of pure solid structures under multiple mass loading cases.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.