{"title":"Design of gradient pore structure, high conductivity and superhydrophilicity to ensure high performance SiC nanowire supercapacitors under 0–60 °C","authors":"Huimin Liu, Xin Zhang, Jingwen Deng, Xujiang Chao, Liyuan Han, Kezhi Li, Xuemin Yin, Hejun Li","doi":"10.1016/j.jmat.2025.101092","DOIUrl":null,"url":null,"abstract":"Design and optimization of electrode material structures are critical steps in the development of supercapacitors. This work presented a design strategy based on SiC nanowires (NWs) as supercapacitor electrode with gradient pore structure, superhydrophilicity, and enhanced conductivity. SiCNWs were <em>in-situ</em> fabricated on a carbon fabric substrate radially via chemical vapor deposition (CVD), constructing conical channels with gradient pore sizes that generate capillary forces and promote ion transport. An ultrathin pyrolytic carbon (PyC) shell (4.98 nm) was coated on the SiCNWs, to improve electrical conductivity without compromising pore structure or wettability. SiCNWs@PyC electrodes with a diameter of ∼0.93 μm exhibited excellent electrochemical performance from 0–60 °C. At 25 °C and a current density of 0.2 mA/cm<sup>2</sup>, the areal capacitance of SiCNWs@PyC electrode was 32.48 mF/cm<sup>2</sup>, representing 227.58% of the areal specific capacitance of pure SiCNWs. At 60 °C, the capacitance remained high at 28.09 mF/cm<sup>2</sup> under the same current density. The <em>in-situ</em> growth strategy and high mechanical stability of the material enabled the symmetric supercapacitor to maintain outstanding rate performance and cycling stability across a wide temperature range. The SiCNWs@PyC core-shell nanostructure is a promising supercapacitor electrode material, offering valuable insights for the development of next-generation energy storage devices.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"3 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101092","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Design and optimization of electrode material structures are critical steps in the development of supercapacitors. This work presented a design strategy based on SiC nanowires (NWs) as supercapacitor electrode with gradient pore structure, superhydrophilicity, and enhanced conductivity. SiCNWs were in-situ fabricated on a carbon fabric substrate radially via chemical vapor deposition (CVD), constructing conical channels with gradient pore sizes that generate capillary forces and promote ion transport. An ultrathin pyrolytic carbon (PyC) shell (4.98 nm) was coated on the SiCNWs, to improve electrical conductivity without compromising pore structure or wettability. SiCNWs@PyC electrodes with a diameter of ∼0.93 μm exhibited excellent electrochemical performance from 0–60 °C. At 25 °C and a current density of 0.2 mA/cm2, the areal capacitance of SiCNWs@PyC electrode was 32.48 mF/cm2, representing 227.58% of the areal specific capacitance of pure SiCNWs. At 60 °C, the capacitance remained high at 28.09 mF/cm2 under the same current density. The in-situ growth strategy and high mechanical stability of the material enabled the symmetric supercapacitor to maintain outstanding rate performance and cycling stability across a wide temperature range. The SiCNWs@PyC core-shell nanostructure is a promising supercapacitor electrode material, offering valuable insights for the development of next-generation energy storage devices.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.