Cryogenic optically detected magnetic resonance (ODMR) platform based on all-room-temperature scanning systems.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Yixuan Wang, Jinpeng Liu, Xi Kong, Min Li, Wentao Ji, Mengqi Wang, Xiangyu Ye, Peihan Lei, Haodong Wang, Ya Wang, Pengfei Wang, Qi Zhang, Fazhan Shi, Jiangfeng Du
{"title":"Cryogenic optically detected magnetic resonance (ODMR) platform based on all-room-temperature scanning systems.","authors":"Yixuan Wang, Jinpeng Liu, Xi Kong, Min Li, Wentao Ji, Mengqi Wang, Xiangyu Ye, Peihan Lei, Haodong Wang, Ya Wang, Pengfei Wang, Qi Zhang, Fazhan Shi, Jiangfeng Du","doi":"10.1063/5.0230895","DOIUrl":null,"url":null,"abstract":"<p><p>The nitrogen-vacancy center in diamond serves as a nanoscale multi-sensor for precise magnetic and electric field measurements in optically detected magnetic resonance (ODMR) experiments. The ODMR system at cryogenic temperatures can be employed for the exploration of significant physical phenomena, such as two-dimensional ferromagnetism and current transport dynamics. Conventional systems, however, suffer from limited scanning range, low load capacity, and instability due to their reliance on cryogenic scanning mechanisms to manipulate samples, objective, and magnetic components. Here, we present a cryogenic ODMR platform utilizing all room-temperature scanning systems, enabling stable operation from 300 to 10.6 K. Our design achieves a positioner motion range of >5 cm and makes it possible to range from 50 to 5000 G, addressing critical challenges in applications requiring large-scale magnetic field scanning and broad temperature range experiments, such as quantum relaxometry studies. The system exhibits high robustness (vibrations <50 nm), high load capacity, cost-effectiveness, and ease of maintenance. Furthermore, our approach can also be directly applied to other promising quantum bit platforms, such as solid-state spin defects in silicon carbide (SiC) and so on.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0230895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The nitrogen-vacancy center in diamond serves as a nanoscale multi-sensor for precise magnetic and electric field measurements in optically detected magnetic resonance (ODMR) experiments. The ODMR system at cryogenic temperatures can be employed for the exploration of significant physical phenomena, such as two-dimensional ferromagnetism and current transport dynamics. Conventional systems, however, suffer from limited scanning range, low load capacity, and instability due to their reliance on cryogenic scanning mechanisms to manipulate samples, objective, and magnetic components. Here, we present a cryogenic ODMR platform utilizing all room-temperature scanning systems, enabling stable operation from 300 to 10.6 K. Our design achieves a positioner motion range of >5 cm and makes it possible to range from 50 to 5000 G, addressing critical challenges in applications requiring large-scale magnetic field scanning and broad temperature range experiments, such as quantum relaxometry studies. The system exhibits high robustness (vibrations <50 nm), high load capacity, cost-effectiveness, and ease of maintenance. Furthermore, our approach can also be directly applied to other promising quantum bit platforms, such as solid-state spin defects in silicon carbide (SiC) and so on.

基于全室温扫描系统的低温光探测磁共振(ODMR)平台。
金刚石中的氮空位中心在光探测磁共振实验中可作为精确测量磁场和电场的纳米级多传感器。低温下的ODMR系统可以用于探索重要的物理现象,如二维铁磁性和电流输运动力学。然而,传统的系统由于依赖于低温扫描机制来操作样品、物镜和磁性元件,因此存在扫描范围有限、负载能力低和不稳定性的问题。在这里,我们提出了一个低温ODMR平台,利用所有室温扫描系统,在300至10.6 K的温度下稳定运行。我们的设计实现了定位器的运动范围为50 ~ 5000g,解决了需要大规模磁场扫描和宽温度范围实验的应用中的关键挑战,例如量子弛豫研究。该系统具有很高的鲁棒性(振动)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信