Fei Ma , Yujie Zhang , Qing Liu , Yaru Guo , Zhijie Yang , Jiaju Zhang
{"title":"Modeling urban transportation safety resilience under extreme rainstorms: A catastrophe theory approach","authors":"Fei Ma , Yujie Zhang , Qing Liu , Yaru Guo , Zhijie Yang , Jiaju Zhang","doi":"10.1016/j.ress.2025.111301","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme rainstorm disasters severely affect urban transportation safety. To scientifically assess urban transportation safety resilience (UTSR<span><span><sup>1</sup></span></span>) and its evolutionary process under extreme rainstorm disasters, this study proposes a novel assessment method by modeling the UTSR using the catastrophe theory approach. First, a safety framework for the urban transportation system is constructed, and catastrophe theory is applied to analyze catastrophic effects on the system. Second, factors affecting UTSR are identified, and their relationships are analyzed using a stock and flow model. Finally, the effectiveness of the UTSR dynamic simulation model is analyzed using the case study of an extreme rainstorm event in Xi'an, China. The results reveal that increasing the investment levels of government regulation effort (GRE<span><span><sup>2</sup></span></span>), information synergy degree (ISD<span><span><sup>3</sup></span></span>), and municipal drainage effectiveness (MDE<span><span><sup>4</sup></span></span>) leads to modeled increases in UTSR levels by 59.44%, 50.18%, and 16.79%, respectively. The results demonstrate that strengthening GRE and ISD significantly enhances UTSR, while MDE has a relatively minor impact. This study contributes a new theoretical perspective and practical modeling tool for capturing abrupt resilience transitions, offering detailed management strategies for enhancing UTSR when facing extreme rainstorms.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"263 ","pages":"Article 111301"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025005022","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme rainstorm disasters severely affect urban transportation safety. To scientifically assess urban transportation safety resilience (UTSR1) and its evolutionary process under extreme rainstorm disasters, this study proposes a novel assessment method by modeling the UTSR using the catastrophe theory approach. First, a safety framework for the urban transportation system is constructed, and catastrophe theory is applied to analyze catastrophic effects on the system. Second, factors affecting UTSR are identified, and their relationships are analyzed using a stock and flow model. Finally, the effectiveness of the UTSR dynamic simulation model is analyzed using the case study of an extreme rainstorm event in Xi'an, China. The results reveal that increasing the investment levels of government regulation effort (GRE2), information synergy degree (ISD3), and municipal drainage effectiveness (MDE4) leads to modeled increases in UTSR levels by 59.44%, 50.18%, and 16.79%, respectively. The results demonstrate that strengthening GRE and ISD significantly enhances UTSR, while MDE has a relatively minor impact. This study contributes a new theoretical perspective and practical modeling tool for capturing abrupt resilience transitions, offering detailed management strategies for enhancing UTSR when facing extreme rainstorms.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.