Intramolecular Electrochemiluminescence Resonant Energy Transfer Biosensor Utilizing Ir-Grafted 2D Hf-MOL and Circular DNA Walker for Ultrasensitive Detection of microRNA-21 in Non-Small-Cell Lung Cancer Diagnostics

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Binnan Shi, Luyang Lv, Dehao Jia, Zhuangzhuang Ru, Shuyuan Liu, Yu Du, Jingshuai Li, Qin Wei
{"title":"Intramolecular Electrochemiluminescence Resonant Energy Transfer Biosensor Utilizing Ir-Grafted 2D Hf-MOL and Circular DNA Walker for Ultrasensitive Detection of microRNA-21 in Non-Small-Cell Lung Cancer Diagnostics","authors":"Binnan Shi, Luyang Lv, Dehao Jia, Zhuangzhuang Ru, Shuyuan Liu, Yu Du, Jingshuai Li, Qin Wei","doi":"10.1021/acs.analchem.5c02322","DOIUrl":null,"url":null,"abstract":"The rapid advancement in non-small-cell lung cancer (NSCLC) diagnostics demands ultrasensitive biosensors for detecting microRNA-21 (miRNA-21), a pivotal prognostic biomarker. An innovative electrochemiluminescence (ECL) biosensor was developed that leverages ECL resonance energy transfer (ECL-RET) as the primary amplification mechanism for ultrasensitive detection. The biosensor integrated a two-dimensional hafnium-based metal–organic layer (<b>Hf-MOL</b>) functionalized with iridium complexes (<b>Ir-Hf-MOL</b>), which serves as an efficient ECL emitter. Enhanced sensitivity is achieved through precise spectral overlap and Förster radius optimization, enabling stable energy transfer from <b>Hf-MOL</b> to Ir-COOH. The structural rigidity of <b>Ir-Hf-MOL</b> further contributed to suppressing nonradiative decay through restricted molecular motion. Charge transfer feasibility is validated via density functional theory (DFT), while a circular DNA walker-mediated amplification strategy is incorporated to augment specificity and signal amplification. The optimized system achieves an exceptional linear range from 1 aM to 1 nM, with a low detection limit of 0.76 aM. Rigorous evaluations of selectivity, stability, and recovery rates (99.4–103.2%) in human serum and Bland–Altman plots confirm clinical applicability. This work establishes a transformative biosensing platform for miRNA-21 detection, emphasizing ECL-RET-driven innovation, and advances diagnostic strategies for NSCLC.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"58 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02322","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement in non-small-cell lung cancer (NSCLC) diagnostics demands ultrasensitive biosensors for detecting microRNA-21 (miRNA-21), a pivotal prognostic biomarker. An innovative electrochemiluminescence (ECL) biosensor was developed that leverages ECL resonance energy transfer (ECL-RET) as the primary amplification mechanism for ultrasensitive detection. The biosensor integrated a two-dimensional hafnium-based metal–organic layer (Hf-MOL) functionalized with iridium complexes (Ir-Hf-MOL), which serves as an efficient ECL emitter. Enhanced sensitivity is achieved through precise spectral overlap and Förster radius optimization, enabling stable energy transfer from Hf-MOL to Ir-COOH. The structural rigidity of Ir-Hf-MOL further contributed to suppressing nonradiative decay through restricted molecular motion. Charge transfer feasibility is validated via density functional theory (DFT), while a circular DNA walker-mediated amplification strategy is incorporated to augment specificity and signal amplification. The optimized system achieves an exceptional linear range from 1 aM to 1 nM, with a low detection limit of 0.76 aM. Rigorous evaluations of selectivity, stability, and recovery rates (99.4–103.2%) in human serum and Bland–Altman plots confirm clinical applicability. This work establishes a transformative biosensing platform for miRNA-21 detection, emphasizing ECL-RET-driven innovation, and advances diagnostic strategies for NSCLC.

Abstract Image

利用ir接枝二维Hf-MOL和环状DNA Walker的分子内电化学发光共振能量转移生物传感器超灵敏检测非小细胞肺癌诊断中的microRNA-21
非小细胞肺癌(NSCLC)诊断的快速发展需要超灵敏的生物传感器来检测microRNA-21 (miRNA-21),这是一种关键的预后生物标志物。开发了一种创新的电化学发光(ECL)生物传感器,利用ECL共振能量转移(ECL- ret)作为超灵敏检测的主要放大机制。该生物传感器集成了含铱配合物(Ir-Hf-MOL)功能化的二维铪基金属有机层(Hf-MOL),可作为高效的ECL发射器。通过精确的光谱重叠和Förster半径优化,实现了从Hf-MOL到Ir-COOH的稳定能量传递,从而提高了灵敏度。Ir-Hf-MOL的结构刚性通过限制分子运动进一步抑制了非辐射衰变。电荷转移的可行性通过密度泛函理论(DFT)验证,而一个环形DNA步行者介导的扩增策略被纳入增加特异性和信号放大。优化后的系统实现了从1 aM到1 nM的良好线性范围,检测限低至0.76 aM。对人血清和Bland-Altman图的选择性、稳定性和回收率(99.4-103.2%)进行了严格的评估,证实了该方法的临床适用性。本研究建立了miRNA-21检测的变革性生物传感平台,强调了ecl - ret驱动的创新,并推进了非小细胞肺癌的诊断策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信