Junchao Cai , Jiarong Zhao , Rui Peng , Heming Yu , Yong He , Qigang Zhou , Yue Wang , Peng Xie
{"title":"NLRP3 in the dorsal raphe nucleus manipulates the depressive-like behaviors","authors":"Junchao Cai , Jiarong Zhao , Rui Peng , Heming Yu , Yong He , Qigang Zhou , Yue Wang , Peng Xie","doi":"10.1016/j.brainresbull.2025.111405","DOIUrl":null,"url":null,"abstract":"<div><div>Major depressive disorder is one of the most common psychiatric disorders, and the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in depression. Dorsal raphe nucleus (DRN), as the main origin of producing serotonin in the brain, is an important functional brain region in depressive disorders. However, the relationship between NLRP3 in the DRN and depression has not been clarified in previous studies. So, we focus on demonstrating the role of NLRP3 expressed in DRN in depression. In this study, the male C57BL/6 J mice were exposed to chronic unpredictable mild stimulation and the expression and cellular localization of NLRP3 in DRN were analyzed. Subsequently, the mice were treated with the NLRP3 inhibitor MCC950 to inhibit NLRP3 inflammasome, and the expression of NLRP3 was knocked down in certain cells within the DRN of NLRP3<sup>fl/fl</sup> mice to investigate the role of NLRP3 in regulating depressive phenotype. Compared with the control group, the expression of NLRP3 in DRN of CUMS group was significantly increased, especially in the microglia and neuron. Furthermore, treatment with the NLRP3 inhibitor induced a significant antidepressant effect, and the depressive phenotype of NLRP3<sup>fl/fl</sup> mice was rescued after knocking down NLRP3 in the microglia or neuron. In addition, the expression levels of related molecules in the NLRP3 inflammasome pathway were significantly higher in the CUMS group compared to the control group. These results illustrated that NLRP3 played an important role in regulating depressive phenotype in DRN, and suggested a new therapy target for depression.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"227 ","pages":"Article 111405"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025002175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Major depressive disorder is one of the most common psychiatric disorders, and the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in depression. Dorsal raphe nucleus (DRN), as the main origin of producing serotonin in the brain, is an important functional brain region in depressive disorders. However, the relationship between NLRP3 in the DRN and depression has not been clarified in previous studies. So, we focus on demonstrating the role of NLRP3 expressed in DRN in depression. In this study, the male C57BL/6 J mice were exposed to chronic unpredictable mild stimulation and the expression and cellular localization of NLRP3 in DRN were analyzed. Subsequently, the mice were treated with the NLRP3 inhibitor MCC950 to inhibit NLRP3 inflammasome, and the expression of NLRP3 was knocked down in certain cells within the DRN of NLRP3fl/fl mice to investigate the role of NLRP3 in regulating depressive phenotype. Compared with the control group, the expression of NLRP3 in DRN of CUMS group was significantly increased, especially in the microglia and neuron. Furthermore, treatment with the NLRP3 inhibitor induced a significant antidepressant effect, and the depressive phenotype of NLRP3fl/fl mice was rescued after knocking down NLRP3 in the microglia or neuron. In addition, the expression levels of related molecules in the NLRP3 inflammasome pathway were significantly higher in the CUMS group compared to the control group. These results illustrated that NLRP3 played an important role in regulating depressive phenotype in DRN, and suggested a new therapy target for depression.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.