Bioinspired Design for Energy-Efficient Soft Actuators Achieving Asymmetrical Spatiotemporal Deformation.

Ki-Young Song, Wenjun Zhang
{"title":"Bioinspired Design for Energy-Efficient Soft Actuators Achieving Asymmetrical Spatiotemporal Deformation.","authors":"Ki-Young Song, Wenjun Zhang","doi":"10.1089/soro.2024.0157","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a bioinspired pneumatic soft actuator designed to achieve asymmetrical spatiotemporal deformations, inspired by the dynamic motion of human walking. The actuator's key innovation is a half-crossing structure that enables controlled airflow to produce complex bending and linear motions using only two air tubes. This design significantly reduces structural complexity and energy consumption compared with conventional soft actuators, which often require multiple air channels to achieve similar deformations. The actuator mimics the stance and swing phases of locomotion, allowing precise multidirectional movements, including forward, backward, and turning motions. A passive feedforward control strategy further enhances movement flexibility without the need for complex feedback systems. Experimental results demonstrate the actuator's adaptability and efficiency when integrated into a hexapod robot, with optimized performance through adjustments in air pressure and cycle duration. This work offers a versatile and energy-efficient solution for adaptive locomotion in soft robotics, advancing the field through a novel approach to actuator design.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a bioinspired pneumatic soft actuator designed to achieve asymmetrical spatiotemporal deformations, inspired by the dynamic motion of human walking. The actuator's key innovation is a half-crossing structure that enables controlled airflow to produce complex bending and linear motions using only two air tubes. This design significantly reduces structural complexity and energy consumption compared with conventional soft actuators, which often require multiple air channels to achieve similar deformations. The actuator mimics the stance and swing phases of locomotion, allowing precise multidirectional movements, including forward, backward, and turning motions. A passive feedforward control strategy further enhances movement flexibility without the need for complex feedback systems. Experimental results demonstrate the actuator's adaptability and efficiency when integrated into a hexapod robot, with optimized performance through adjustments in air pressure and cycle duration. This work offers a versatile and energy-efficient solution for adaptive locomotion in soft robotics, advancing the field through a novel approach to actuator design.

实现非对称时空变形的节能软执行器仿生设计。
本文提出了一种仿生气动软执行器,旨在实现不对称的时空变形,灵感来自于人类行走的动态运动。执行器的关键创新是半交叉结构,使控制气流产生复杂的弯曲和线性运动,仅使用两个空气管。与传统的软执行器相比,这种设计显著降低了结构复杂性和能耗,传统的软执行器通常需要多个空气通道来实现类似的变形。执行器模仿运动的姿态和摆动阶段,允许精确的多向运动,包括前进,后退和转向运动。被动前馈控制策略进一步提高了运动的灵活性,而不需要复杂的反馈系统。实验结果表明,将该驱动器集成到六足机器人中具有良好的适应性和效率,并通过调节气压和循环时间来优化其性能。这项工作为软机器人中的自适应运动提供了一种通用且节能的解决方案,通过一种新颖的执行器设计方法推进了该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信