Melissa Gonzalez , Mark A. Gradwell , Joshua K. Thackray , Kanaksha K. Temkar , Komal R. Patel , Victoria E. Abraira
{"title":"Using DeepLabCut-Live to probe state dependent neural circuits of behavior with closed-loop optogenetic stimulation","authors":"Melissa Gonzalez , Mark A. Gradwell , Joshua K. Thackray , Kanaksha K. Temkar , Komal R. Patel , Victoria E. Abraira","doi":"10.1016/j.jneumeth.2025.110495","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Closed-loop behavior paradigms allow for real-time investigation of state-dependent neural circuits underlying behavior. However, studying context-dependent locomotor perturbations is challenging due to limitations in molecular tools and techniques for real-time manipulation of spinal circuits.</div></div><div><h3>New method</h3><div>We developed a novel closed-loop optogenetic stimulation paradigm that leverages DeepLabCut-Live pose estimation to manipulate primary sensory afferent activity at specific phases of the locomotor cycle in mice. A compact DeepLabCut model was trained to track hindlimb kinematics in real-time and integrated into the Bonsai visual programming framework. This system enabled LED triggered photo-stimulation of sensory neurons expressing channelrhodopsin based on user-defined pose-based criteria, such as stance or swing phase.</div></div><div><h3>Results</h3><div>Optogenetic activation of nociceptive TRPV1<sup>+</sup> sensory neurons during treadmill locomotion reliably evoked paw withdrawal responses. Stimulation during the stance phase generated a brief withdrawal and impacted the duration of the following swing phase. Stimulation during the swing phase increased the height of paw withdrawal during swing and reduced the duration of the following stance phase.</div></div><div><h3>Comparison with existing methods</h3><div>This method allows for high spatiotemporal precision in manipulating spinal circuits based on locomotor phase. Unlike previous approaches, this closed-loop system accounts for state-dependent nature of sensorimotor responses, enabling controlled, real-time modulation of locomotion.</div></div><div><h3>Conclusions</h3><div>Integrating DeepLabCut-Live with optogenetics provides a powerful tool for dissecting the context-dependent role of sensory feedback and spinal interneurons in locomotion. This technique opens new avenues for uncovering the neural substrates of state-dependent behaviors and has broad applicability for studies of real-time closed-loop manipulation based on pose estimation.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"422 ","pages":"Article 110495"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001360","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Closed-loop behavior paradigms allow for real-time investigation of state-dependent neural circuits underlying behavior. However, studying context-dependent locomotor perturbations is challenging due to limitations in molecular tools and techniques for real-time manipulation of spinal circuits.
New method
We developed a novel closed-loop optogenetic stimulation paradigm that leverages DeepLabCut-Live pose estimation to manipulate primary sensory afferent activity at specific phases of the locomotor cycle in mice. A compact DeepLabCut model was trained to track hindlimb kinematics in real-time and integrated into the Bonsai visual programming framework. This system enabled LED triggered photo-stimulation of sensory neurons expressing channelrhodopsin based on user-defined pose-based criteria, such as stance or swing phase.
Results
Optogenetic activation of nociceptive TRPV1+ sensory neurons during treadmill locomotion reliably evoked paw withdrawal responses. Stimulation during the stance phase generated a brief withdrawal and impacted the duration of the following swing phase. Stimulation during the swing phase increased the height of paw withdrawal during swing and reduced the duration of the following stance phase.
Comparison with existing methods
This method allows for high spatiotemporal precision in manipulating spinal circuits based on locomotor phase. Unlike previous approaches, this closed-loop system accounts for state-dependent nature of sensorimotor responses, enabling controlled, real-time modulation of locomotion.
Conclusions
Integrating DeepLabCut-Live with optogenetics provides a powerful tool for dissecting the context-dependent role of sensory feedback and spinal interneurons in locomotion. This technique opens new avenues for uncovering the neural substrates of state-dependent behaviors and has broad applicability for studies of real-time closed-loop manipulation based on pose estimation.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.