Domen Vake , Niki Hrovatin , Jernej Vičič , Aleksandar Tošić
{"title":"Occupancy estimation using indoor air quality data: opportunities and privacy implications","authors":"Domen Vake , Niki Hrovatin , Jernej Vičič , Aleksandar Tošić","doi":"10.1016/j.enbuild.2025.115894","DOIUrl":null,"url":null,"abstract":"<div><div>Indoor Air Quality (IAQ) has long been a significant concern due to its health-related risks and potential benefits. Readily available air quality sensors are now affordable and have been installed in many buildings with public buildings taking center stage. The dynamics of IAQ are commonly studied in relation to different materials used in construction, building design, room utility and effects on occupants. However, besides what the sensors were designed to measure, it is possible to infer other information. In this paper, we present a Machine Learning (ML) model that predicts the presence of people in the room with an accuracy as high as 93 % and the exact number of occupants with 2.17 MAE. We validate our proposed approach in the use-case of an elementary school in Slovenia. In collaboration with the elementary school in Ajdovščina, 8 air quality sensors were placed in classrooms and air quality parameters (VOC, CO<span><math><msub><mrow></mrow><mn>2</mn></msub></math></span>, Temperature, and Humidity) were monitored for 6 months. During the monitoring period, school staff collected anonymous data about classroom occupancy. The indoor air quality data was paired with external weather data as well as occupancy to train the model. Moreover, we compare our approach with other commonly used ML approaches and provide results related to our use case. Finally, these results highlight the privacy concerns related to structural monitoring due to the established ability to infer potentially sensitive information.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"343 ","pages":"Article 115894"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825006243","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Indoor Air Quality (IAQ) has long been a significant concern due to its health-related risks and potential benefits. Readily available air quality sensors are now affordable and have been installed in many buildings with public buildings taking center stage. The dynamics of IAQ are commonly studied in relation to different materials used in construction, building design, room utility and effects on occupants. However, besides what the sensors were designed to measure, it is possible to infer other information. In this paper, we present a Machine Learning (ML) model that predicts the presence of people in the room with an accuracy as high as 93 % and the exact number of occupants with 2.17 MAE. We validate our proposed approach in the use-case of an elementary school in Slovenia. In collaboration with the elementary school in Ajdovščina, 8 air quality sensors were placed in classrooms and air quality parameters (VOC, CO, Temperature, and Humidity) were monitored for 6 months. During the monitoring period, school staff collected anonymous data about classroom occupancy. The indoor air quality data was paired with external weather data as well as occupancy to train the model. Moreover, we compare our approach with other commonly used ML approaches and provide results related to our use case. Finally, these results highlight the privacy concerns related to structural monitoring due to the established ability to infer potentially sensitive information.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.