{"title":"Digital Biomarkers and AI for Remote Monitoring of Fatigue Progression in Neurological Disorders: Bridging Mechanisms to Clinical Applications.","authors":"Thorsten Rudroff","doi":"10.3390/brainsci15050533","DOIUrl":null,"url":null,"abstract":"<p><p>Digital biomarkers for fatigue monitoring in neurological disorders represent an innovative approach to bridge the gap between mechanistic understanding and clinical application. This perspective paper examines how smartphone-derived measures, analyzed through artificial intelligence methods, can transform fatigue assessment from subjective, episodic reporting to continuous, objective monitoring. The proposed framework for smartphone-based digital phenotyping captures passive data (movement patterns, device interactions, and sleep metrics) and active assessments (ecological momentary assessments, cognitive tests, and voice analysis). These digital biomarkers can be validated through a multimodal approach connecting them to neuroimaging markers, clinical assessments, performance measures, and patient-reported experiences. Building on the previous research on frontal-striatal metabolism in multiple sclerosis and Long-COVID-19 patients, digital biomarkers could enable early warning systems for fatigue episodes, objective treatment response monitoring, and personalized fatigue management strategies. Implementation considerations include privacy protection, equity concerns, and regulatory pathways. By integrating smartphone-derived digital biomarkers with AI analysis approaches, the future envisions fatigue in neurological disorders no longer as an invisible, subjective experience but rather as a quantifiable, treatable phenomenon with established neural correlates and effective interventions. This transformative approach has significant potential to enhance both clinical care and the research for millions affected by disabling fatigue symptoms.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15050533","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Digital biomarkers for fatigue monitoring in neurological disorders represent an innovative approach to bridge the gap between mechanistic understanding and clinical application. This perspective paper examines how smartphone-derived measures, analyzed through artificial intelligence methods, can transform fatigue assessment from subjective, episodic reporting to continuous, objective monitoring. The proposed framework for smartphone-based digital phenotyping captures passive data (movement patterns, device interactions, and sleep metrics) and active assessments (ecological momentary assessments, cognitive tests, and voice analysis). These digital biomarkers can be validated through a multimodal approach connecting them to neuroimaging markers, clinical assessments, performance measures, and patient-reported experiences. Building on the previous research on frontal-striatal metabolism in multiple sclerosis and Long-COVID-19 patients, digital biomarkers could enable early warning systems for fatigue episodes, objective treatment response monitoring, and personalized fatigue management strategies. Implementation considerations include privacy protection, equity concerns, and regulatory pathways. By integrating smartphone-derived digital biomarkers with AI analysis approaches, the future envisions fatigue in neurological disorders no longer as an invisible, subjective experience but rather as a quantifiable, treatable phenomenon with established neural correlates and effective interventions. This transformative approach has significant potential to enhance both clinical care and the research for millions affected by disabling fatigue symptoms.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.