Luteolin 7-Glucuronide in Artemisia rupestris L. Extract Attenuates Pulmonary Fibrosis by Inhibiting Fibroblast Activation and FMT via Targeting of TGF-β1.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lingfeng Peng, Yimeng Fan, Luyao Wang, Chao Han, Zhihui Hao
{"title":"Luteolin 7-Glucuronide in <i>Artemisia rupestris</i> L. Extract Attenuates Pulmonary Fibrosis by Inhibiting Fibroblast Activation and FMT via Targeting of TGF-β1.","authors":"Lingfeng Peng, Yimeng Fan, Luyao Wang, Chao Han, Zhihui Hao","doi":"10.3390/antiox14050533","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary fibrosis (PF) is a chronic pulmonary disease characterized by excessive extracellular matrix (ECM) deposition, with cigarette smoking being a major risk factor and no effective treatment at present. Transforming growth factor beta 1 (TGF-β1) plays a key role in PF and regulating oxidative stress. This study investigated the effects and mechanisms of <i>Artemisia rupestris</i> L. ethanol extract (ER) on cigarette smoke (CS)-induced PF. We used pull-down and LC-MS analyses to screen and identify compounds that bind to TGF-β1 in ER. We demonstrated that ER inhibits CS-induced PF, lung inflammation, and oxidative stress, thereby improving pulmonary structural injury. The ER inhibits fibroblast activation and fibroblast-to-myofibroblast transition (FMT), reducing collagen deposition for the treatment of PF. We identified the active ingredient in ER that binds to TGF-β1, namely, Luteolin 7-glucuronide (LG). LG inhibits the TGF-β1 signaling pathway through targeted binding to TGF-β1, downregulates the expression of downstream proteins (including collagen I, α-SMA, MMP-2, and MMP-9), and inhibits <i>fibronectin</i> expression. It also inhibits fibroblast activation and FMT, enhances <i>E-cadherin</i> expression to promote fibroblast adhesion, and suppresses collagen deposition, alleviating PF. Based on these findings, we propose that LG might be a promising therapeutic drug candidate for treating PF.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 5","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14050533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary fibrosis (PF) is a chronic pulmonary disease characterized by excessive extracellular matrix (ECM) deposition, with cigarette smoking being a major risk factor and no effective treatment at present. Transforming growth factor beta 1 (TGF-β1) plays a key role in PF and regulating oxidative stress. This study investigated the effects and mechanisms of Artemisia rupestris L. ethanol extract (ER) on cigarette smoke (CS)-induced PF. We used pull-down and LC-MS analyses to screen and identify compounds that bind to TGF-β1 in ER. We demonstrated that ER inhibits CS-induced PF, lung inflammation, and oxidative stress, thereby improving pulmonary structural injury. The ER inhibits fibroblast activation and fibroblast-to-myofibroblast transition (FMT), reducing collagen deposition for the treatment of PF. We identified the active ingredient in ER that binds to TGF-β1, namely, Luteolin 7-glucuronide (LG). LG inhibits the TGF-β1 signaling pathway through targeted binding to TGF-β1, downregulates the expression of downstream proteins (including collagen I, α-SMA, MMP-2, and MMP-9), and inhibits fibronectin expression. It also inhibits fibroblast activation and FMT, enhances E-cadherin expression to promote fibroblast adhesion, and suppresses collagen deposition, alleviating PF. Based on these findings, we propose that LG might be a promising therapeutic drug candidate for treating PF.

青蒿提取物木犀草素7-葡糖苷通过靶向TGF-β1抑制成纤维细胞活化和FMT减轻肺纤维化。
肺纤维化(Pulmonary fibrosis, PF)是一种以细胞外基质(extracellular matrix, ECM)过度沉积为特征的慢性肺部疾病,吸烟是其主要危险因素,目前尚无有效的治疗方法。转化生长因子β1 (TGF-β1)在PF和调节氧化应激中起关键作用。本研究探讨了黄花蒿乙醇提取物(ER)对香烟烟雾(CS)诱导的PF的作用及其机制,采用下拉-下拉和LC-MS分析方法筛选和鉴定了ER中与TGF-β1结合的化合物。我们证明内质网抑制cs诱导的PF、肺部炎症和氧化应激,从而改善肺结构损伤。内质网抑制成纤维细胞活化和成纤维细胞向肌成纤维细胞转化(FMT),减少胶原沉积,治疗PF。我们发现内质网中与TGF-β1结合的活性成分,即木犀草素7-葡糖苷(LG)。LG通过靶向结合TGF-β1抑制TGF-β1信号通路,下调下游蛋白(包括胶原I、α-SMA、MMP-2、MMP-9)表达,抑制纤维连接蛋白表达。它还能抑制成纤维细胞的活化和FMT,提高E-cadherin的表达,促进成纤维细胞粘附,抑制胶原沉积,减轻PF。基于这些发现,我们认为LG可能是治疗PF的有希望的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信