{"title":"Improvement of the Structure and Antioxidant Activity of Protein-Polyphenol Complexes in Barley Malts Using Roasting Methods.","authors":"Guozhi Wu, Huiting Lin, Yongsheng Chen","doi":"10.3390/antiox14050538","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins and polyphenols are important components in barley malt. During the roasting process of barley malt, proteins and polyphenols interact and influence each other, ultimately altering the nutritional profile and functional properties of barley malt. In this research, polyphenol-free proteins and protein-polyphenol complexes were extracted from barley malt subjected to varying degrees of roasting. The antioxidant activity of protein-polyphenol complexes was assessed by ABTS, FRAP, and ORAC assays. The structural characteristics of the proteins were examined through UV, FL, CD, FTIR, and SEM. We found that roasting enhances the solubility of globulin, prolamin, and glutenin and facilitates the binding of these proteins with polyphenols. Conversely, the impact of roasting on albumin exhibits a trend opposite to that observed in the other three proteins. The antioxidant activity of protein-polyphenol complexes was significantly higher than that of polyphenol-free proteins. Additionally, the microenvironment of the amino acid residues of the four proteins exhibited increased polarity following the roasting process, and the structural conformation of albumin, globulin, and glutelin transitioned from an ordered to a disordered state. Our results indicate that roasting enhances the antioxidant activity of protein-polyphenol complexes by altering the secondary and tertiary structures of these proteins, thereby exposing more hydrophobic side-chain groups inside the proteins and offering more binding sites for polyphenols.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 5","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14050538","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins and polyphenols are important components in barley malt. During the roasting process of barley malt, proteins and polyphenols interact and influence each other, ultimately altering the nutritional profile and functional properties of barley malt. In this research, polyphenol-free proteins and protein-polyphenol complexes were extracted from barley malt subjected to varying degrees of roasting. The antioxidant activity of protein-polyphenol complexes was assessed by ABTS, FRAP, and ORAC assays. The structural characteristics of the proteins were examined through UV, FL, CD, FTIR, and SEM. We found that roasting enhances the solubility of globulin, prolamin, and glutenin and facilitates the binding of these proteins with polyphenols. Conversely, the impact of roasting on albumin exhibits a trend opposite to that observed in the other three proteins. The antioxidant activity of protein-polyphenol complexes was significantly higher than that of polyphenol-free proteins. Additionally, the microenvironment of the amino acid residues of the four proteins exhibited increased polarity following the roasting process, and the structural conformation of albumin, globulin, and glutelin transitioned from an ordered to a disordered state. Our results indicate that roasting enhances the antioxidant activity of protein-polyphenol complexes by altering the secondary and tertiary structures of these proteins, thereby exposing more hydrophobic side-chain groups inside the proteins and offering more binding sites for polyphenols.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.