Bingyu Bai, Piaohan Tu, Jiayi Weng, Yan Zhang, Quan Lin, Mitchell N Muskat, Jie Wang, Xue Tang, Xiangrong Cheng
{"title":"Identification of Food-Derived Electrophilic Chalcones as Nrf2 Activators Using Comprehensive Virtual Screening Techniques.","authors":"Bingyu Bai, Piaohan Tu, Jiayi Weng, Yan Zhang, Quan Lin, Mitchell N Muskat, Jie Wang, Xue Tang, Xiangrong Cheng","doi":"10.3390/antiox14050546","DOIUrl":null,"url":null,"abstract":"<p><p>Electrophilic compounds are bioactive components commonly found in foods that are capable of covalently modifying nucleophilic sites on biologically functional macromolecules. These compounds may elicit positive bioactivity or negative biotoxicity, posing significant challenges in terms of time and resource expenditure in the de novo characterization of their biological activity. In this study, we developed a database of 332 food-derived electrophilic compounds and used a semi-supervised k-nearest neighbors (KNN) machine learning model to predict their bioactivity. Molecular docking analysis identified the three chalcone compounds with the highest potential positive activity-4-hydroxyderricin (4HD), isoliquiritigenin (ISO), and butein. Furthermore, in cell experiments, treatment with 4HD, ISO, and butein significantly reduced reactive oxygen species (ROS) levels. An RT-qPCR analysis demonstrated that these chalcones significantly upregulated the mRNA expression of <i>Nrf2</i> and its downstream antioxidant genes, including <i>Nqo1</i>, <i>HO-1</i>, <i>Gsr</i>, <i>Gclc</i>, and <i>Gclm</i>. ISO's cytoprotective and antioxidant effects were abolished following these findings, which highlight that 4HD, ISO, and butein are effective Nrf2 activators and suggest that comprehensive virtual technology is a promising strategy for identifying functional bioactive compounds.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"14 5","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox14050546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrophilic compounds are bioactive components commonly found in foods that are capable of covalently modifying nucleophilic sites on biologically functional macromolecules. These compounds may elicit positive bioactivity or negative biotoxicity, posing significant challenges in terms of time and resource expenditure in the de novo characterization of their biological activity. In this study, we developed a database of 332 food-derived electrophilic compounds and used a semi-supervised k-nearest neighbors (KNN) machine learning model to predict their bioactivity. Molecular docking analysis identified the three chalcone compounds with the highest potential positive activity-4-hydroxyderricin (4HD), isoliquiritigenin (ISO), and butein. Furthermore, in cell experiments, treatment with 4HD, ISO, and butein significantly reduced reactive oxygen species (ROS) levels. An RT-qPCR analysis demonstrated that these chalcones significantly upregulated the mRNA expression of Nrf2 and its downstream antioxidant genes, including Nqo1, HO-1, Gsr, Gclc, and Gclm. ISO's cytoprotective and antioxidant effects were abolished following these findings, which highlight that 4HD, ISO, and butein are effective Nrf2 activators and suggest that comprehensive virtual technology is a promising strategy for identifying functional bioactive compounds.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.