Structure from motion-convolutional neural network model (SfM-CNN) achieved accurate portable Chinese dietary chemical composition estimation for dietary recall

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Peihua Ma , Hsuan Chih Hong , Xiaoxue Jia , Cheng Jan Chi , Ning Xiao , Bei Fan , Fengzhong Wang , Cheng-I Wei
{"title":"Structure from motion-convolutional neural network model (SfM-CNN) achieved accurate portable Chinese dietary chemical composition estimation for dietary recall","authors":"Peihua Ma ,&nbsp;Hsuan Chih Hong ,&nbsp;Xiaoxue Jia ,&nbsp;Cheng Jan Chi ,&nbsp;Ning Xiao ,&nbsp;Bei Fan ,&nbsp;Fengzhong Wang ,&nbsp;Cheng-I Wei","doi":"10.1016/j.foodchem.2025.144908","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately estimating the chemical composition of dietary intake is essential for health and nutrition management, especially in regions with complex culinary diversity like China. This study introduces a novel AI-driven solution using a Structure from Motion-Convolutional Neural Network (SfM-CNN) model to automate chemical composition analysis of Chinese food. By integrating advanced 3D reconstruction techniques with deep learning, specifically the Scale-Invariant Feature Transform (SIFT) algorithm, we achieved superior feature extraction and food volume estimation with less than 4 % error. Our model, trained on the newly developed ChineseDish-100 dataset, demonstrated an R<sup>2</sup> of 0.949 for carbohydrate content estimation using the SIFT-ResNet50 architecture. The model's interpretability was enhanced through visualizations, facilitating parameter optimization and reliable chemical composition estimation. These results underscore the potential of AI-powered models in providing efficient, accurate, and culturally relevant dietary analysis tools, marking a significant advancement for nutritional science, food chemistry, and public health initiatives in culturally diverse regions.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"489 ","pages":"Article 144908"},"PeriodicalIF":8.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625021594","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately estimating the chemical composition of dietary intake is essential for health and nutrition management, especially in regions with complex culinary diversity like China. This study introduces a novel AI-driven solution using a Structure from Motion-Convolutional Neural Network (SfM-CNN) model to automate chemical composition analysis of Chinese food. By integrating advanced 3D reconstruction techniques with deep learning, specifically the Scale-Invariant Feature Transform (SIFT) algorithm, we achieved superior feature extraction and food volume estimation with less than 4 % error. Our model, trained on the newly developed ChineseDish-100 dataset, demonstrated an R2 of 0.949 for carbohydrate content estimation using the SIFT-ResNet50 architecture. The model's interpretability was enhanced through visualizations, facilitating parameter optimization and reliable chemical composition estimation. These results underscore the potential of AI-powered models in providing efficient, accurate, and culturally relevant dietary analysis tools, marking a significant advancement for nutritional science, food chemistry, and public health initiatives in culturally diverse regions.
基于运动-卷积神经网络模型(SfM-CNN)的结构实现了精确的便携式中式膳食化学成分估计
准确估计膳食摄入的化学成分对于健康和营养管理至关重要,特别是在像中国这样烹饪多样性复杂的地区。本研究提出了一种新的人工智能驱动的解决方案,利用运动-卷积神经网络(SfM-CNN)模型来自动分析中国食品的化学成分。通过将先进的3D重建技术与深度学习相结合,特别是尺度不变特征变换(SIFT)算法,我们实现了卓越的特征提取和食物体积估计,误差小于4 %。我们的模型在新开发的ChineseDish-100数据集上进行训练,使用SIFT-ResNet50架构估算碳水化合物含量的R2为0.949。通过可视化增强了模型的可解释性,便于参数优化和可靠的化学成分估计。这些结果强调了人工智能模型在提供高效、准确和与文化相关的饮食分析工具方面的潜力,标志着文化多样性地区营养科学、食品化学和公共卫生倡议取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信