Ioannis Adamopoulos, Antonios Valamontes, Panagiotis Tsirkas, George Dounias
{"title":"Predicting Workplace Hazard, Stress and Burnout Among Public Health Inspectors: An AI-Driven Analysis in the Context of Climate Change.","authors":"Ioannis Adamopoulos, Antonios Valamontes, Panagiotis Tsirkas, George Dounias","doi":"10.3390/ejihpe15050065","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85-90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, <i>p</i> < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, <i>p</i> < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI's effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.</p>","PeriodicalId":30631,"journal":{"name":"European Journal of Investigation in Health Psychology and Education","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Investigation in Health Psychology and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ejihpe15050065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85-90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, p < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, p < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI's effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.