Predicting Workplace Hazard, Stress and Burnout Among Public Health Inspectors: An AI-Driven Analysis in the Context of Climate Change.

IF 3 Q1 PSYCHOLOGY, CLINICAL
Ioannis Adamopoulos, Antonios Valamontes, Panagiotis Tsirkas, George Dounias
{"title":"Predicting Workplace Hazard, Stress and Burnout Among Public Health Inspectors: An AI-Driven Analysis in the Context of Climate Change.","authors":"Ioannis Adamopoulos, Antonios Valamontes, Panagiotis Tsirkas, George Dounias","doi":"10.3390/ejihpe15050065","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85-90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, <i>p</i> < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, <i>p</i> < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI's effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.</p>","PeriodicalId":30631,"journal":{"name":"European Journal of Investigation in Health Psychology and Education","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Investigation in Health Psychology and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ejihpe15050065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85-90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, p < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, p < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI's effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.

预测公共卫生检查员的工作场所危害、压力和倦怠:气候变化背景下的人工智能驱动分析。
与气候有关的工作场所危害日益严重,对职业健康和安全构成挑战,特别是对公共卫生和安全检查员而言。暴露在极端温度、空气污染和高风险环境中会加剧直接的身体威胁和长期的倦怠。本研究采用人工智能(AI)驱动的预测分析和二次数据分析来评估危害和预测倦怠风险。包括极限梯度增强(XGBoost 3.0)、随机森林、自动编码器和长短期记忆(LSTMs)在内的机器学习模型,在危险预测方面达到了85-90%的准确率,在6个月内将工作场所事故减少了35%。职业倦怠风险分析确定了主要预测因素:物理危害暴露(β = 0.76, p < 0.01)、工作时间过长(10小时/天,+40%风险)和培训不足(β = 0.68, p < 0.05)。适应性工作量安排和疲劳监测将倦怠率降低了28%。实时环境数据改进了危险检测,而基于自然语言处理(NLP)的文本挖掘可以识别工人报告中的压力相关指标。结果证明了人工智能在工作场所安全、预测、分类和降低风险方面的有效性。基于强化学习的自适应监控优化了员工幸福感。将预测驱动的职业健康框架扩展到更广泛的行业,可以加强安全协议,确保主动减轻风险。未来的应用包括集成生物识别可穿戴设备和实时生理监测,以提高预测准确性和增强职业弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
12.50%
发文量
111
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信