F. Morovat , M. Karimi , R. Dehdari Vais , M. Negahdary , S.A. Dastgheib , H. Heli
{"title":"Development of a self-nanoemulsifying system for the oil extract of Mentha spicata L. and evaluation of its anticancer efficacy in vitro","authors":"F. Morovat , M. Karimi , R. Dehdari Vais , M. Negahdary , S.A. Dastgheib , H. Heli","doi":"10.1016/j.fhfh.2025.100222","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocarriers based on (natural) lipids have been extensively studied to improve the oral bioavailability of anticancer compounds/drugs with poor water solubility. Self-nanoemulsifying drug delivery systems (SNEDDSs) are a route to improve the solubility and bioavailability of lipophilic compounds. In a present study, an SNEDDS using the oil extract of <em>Mentha spicata</em> L. leaves, Tween 80, and PEG 600 (SMO) was prepared. Pseudo-ternary phase diagrams were constructed to find suitable surfactant, solubilizer with the oil extract that form self-nanoemulsion after dilution in water. SMO comprised Tween 80:PEG 600:the oil with 2:3:5 in volume ratios or 2.1:3.4:4.5 in mass ratios. It comprised nanodroplets of 82.5 ± 4.7 nm in diameter and had a stability of >45 days. SMO led to enhanced cytotoxicity of the oil extract with IC-50 values of 1.9 ± 0.1 and 2.0 ± 0.1 mg mL<sup>−1</sup> for MDA-MB-231 and MCF-7 cells, respectively. SMO would be applicable for delivery of either water insoluble chemotherapeutic drugs or natural anticancer oils upon more investigations.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100222"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025925000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocarriers based on (natural) lipids have been extensively studied to improve the oral bioavailability of anticancer compounds/drugs with poor water solubility. Self-nanoemulsifying drug delivery systems (SNEDDSs) are a route to improve the solubility and bioavailability of lipophilic compounds. In a present study, an SNEDDS using the oil extract of Mentha spicata L. leaves, Tween 80, and PEG 600 (SMO) was prepared. Pseudo-ternary phase diagrams were constructed to find suitable surfactant, solubilizer with the oil extract that form self-nanoemulsion after dilution in water. SMO comprised Tween 80:PEG 600:the oil with 2:3:5 in volume ratios or 2.1:3.4:4.5 in mass ratios. It comprised nanodroplets of 82.5 ± 4.7 nm in diameter and had a stability of >45 days. SMO led to enhanced cytotoxicity of the oil extract with IC-50 values of 1.9 ± 0.1 and 2.0 ± 0.1 mg mL−1 for MDA-MB-231 and MCF-7 cells, respectively. SMO would be applicable for delivery of either water insoluble chemotherapeutic drugs or natural anticancer oils upon more investigations.