{"title":"Unified multimodal multidomain polymer representation for property prediction","authors":"Qi Huang, Yedi Li, Lei Zhu, Qibin Zhao, Wenjie Yu","doi":"10.1038/s41524-025-01652-z","DOIUrl":null,"url":null,"abstract":"<p>Polymer property prediction is a critical task in polymer science. Conventional approaches typically rely on a single data modality or a limited set of modalities, which constrains both predictive accuracy and practical applicability. In this paper, we present Uni-Poly, a novel framework that integrates diverse data modalities to achieve a comprehensive and unified representation of polymers. Uni-Poly encompasses all commonly used structural formats, including SMILES, 2D graphs, 3D geometries, and fingerprints. In addition, it incorporates domain-specific textual descriptions to enrich the representation. Experimental results demonstrate that Uni-Poly outperforms all single-modality and multi-modality baselines across various property prediction tasks. The integration of textual descriptions provides complementary information that structural representations alone cannot capture. These findings underscore the value of leveraging multimodal and domain-specific information to enhance polymer property prediction, thereby advancing high-throughput screening and the discovery of novel polymer materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"59 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01652-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer property prediction is a critical task in polymer science. Conventional approaches typically rely on a single data modality or a limited set of modalities, which constrains both predictive accuracy and practical applicability. In this paper, we present Uni-Poly, a novel framework that integrates diverse data modalities to achieve a comprehensive and unified representation of polymers. Uni-Poly encompasses all commonly used structural formats, including SMILES, 2D graphs, 3D geometries, and fingerprints. In addition, it incorporates domain-specific textual descriptions to enrich the representation. Experimental results demonstrate that Uni-Poly outperforms all single-modality and multi-modality baselines across various property prediction tasks. The integration of textual descriptions provides complementary information that structural representations alone cannot capture. These findings underscore the value of leveraging multimodal and domain-specific information to enhance polymer property prediction, thereby advancing high-throughput screening and the discovery of novel polymer materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.