A robust latent factor model for high-dimensional portfolio selection

IF 2.4 2区 经济学 Q2 BUSINESS, FINANCE
Fangquan Shi , Lianjie Shu , Xinhua Gu
{"title":"A robust latent factor model for high-dimensional portfolio selection","authors":"Fangquan Shi ,&nbsp;Lianjie Shu ,&nbsp;Xinhua Gu","doi":"10.1016/j.jempfin.2025.101623","DOIUrl":null,"url":null,"abstract":"<div><div>Portfolio selection, faced with large volatile data sets of strongly correlated asset returns, is prone to unstable portfolio weights and serious estimation error. To attenuate this problem, our work proposes a new latent factor model equipped with both a suitable robust estimator to deal with cellwise data contamination and a diagonally-dominant (DD) covariance structure to account for cross-sectional dependence among residual returns. The proposed robust DD model is found to compare favorably with various competitors from the literature in terms of out-of-sample portfolio performance across real-world data sets.</div></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"83 ","pages":"Article 101623"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539825000453","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Portfolio selection, faced with large volatile data sets of strongly correlated asset returns, is prone to unstable portfolio weights and serious estimation error. To attenuate this problem, our work proposes a new latent factor model equipped with both a suitable robust estimator to deal with cellwise data contamination and a diagonally-dominant (DD) covariance structure to account for cross-sectional dependence among residual returns. The proposed robust DD model is found to compare favorably with various competitors from the literature in terms of out-of-sample portfolio performance across real-world data sets.
高维投资组合选择的稳健潜在因素模型
投资组合选择面对的是由资产收益强相关的大量波动数据集,容易产生不稳定的投资组合权重和严重的估计误差。为了减轻这个问题,我们的工作提出了一个新的潜在因素模型,该模型配备了一个合适的鲁棒估计器来处理单元数据污染,以及一个对角主导(DD)协方差结构来解释剩余收益之间的横截面依赖性。在真实世界数据集的样本外投资组合表现方面,发现所提出的鲁棒DD模型与文献中的各种竞争对手相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
3.80%
发文量
59
期刊介绍: The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信