{"title":"Network analysis-enhanced project risk management for nuclear power plant construction","authors":"André L.N. Casotti , Enrico Zio","doi":"10.1016/j.ress.2025.111269","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a comprehensive framework for managing interdependent delay risks in nuclear power plant (NPP) construction by integrating network theory and topological analysis. Spent fuel disposal, nuclear plant safety and nuclear weapons proliferation are known important concerns for nuclear power development, but costs remain the fundamental problem, as NPP projects are plagued by schedule delays that substantially increase total costs. Such complex megaprojects are exposed to numerous risks of different sources that behave interdependently. Most of the studies understand the risks of delay in NPP construction projects in isolation without taking interdependencies into account. The proposed methodology employs a Design Structure Matrix (DSM) to construct a Risk Interaction Network (RIN), enabling a topological assessment to identify critical risks that may cause cascading delays in project tasks. An algorithmic search for these critical risks is conducted, considering the impact of their removal on the RIN's characteristics. We define a bi-objective optimization problem aimed at generating a project schedule that minimizes both the project's makespan and the reachability density of the RIN. The solution is obtained using an evolutionary algorithm. Applied to a Double-Containment Pressurized Water Reactor (DC-PWR) project, this approach effectively uncovers risks neglected by classical analysis and offers scheduling options for different risk attitudes, enhancing decision-making capabilities.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"263 ","pages":"Article 111269"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025004703","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a comprehensive framework for managing interdependent delay risks in nuclear power plant (NPP) construction by integrating network theory and topological analysis. Spent fuel disposal, nuclear plant safety and nuclear weapons proliferation are known important concerns for nuclear power development, but costs remain the fundamental problem, as NPP projects are plagued by schedule delays that substantially increase total costs. Such complex megaprojects are exposed to numerous risks of different sources that behave interdependently. Most of the studies understand the risks of delay in NPP construction projects in isolation without taking interdependencies into account. The proposed methodology employs a Design Structure Matrix (DSM) to construct a Risk Interaction Network (RIN), enabling a topological assessment to identify critical risks that may cause cascading delays in project tasks. An algorithmic search for these critical risks is conducted, considering the impact of their removal on the RIN's characteristics. We define a bi-objective optimization problem aimed at generating a project schedule that minimizes both the project's makespan and the reachability density of the RIN. The solution is obtained using an evolutionary algorithm. Applied to a Double-Containment Pressurized Water Reactor (DC-PWR) project, this approach effectively uncovers risks neglected by classical analysis and offers scheduling options for different risk attitudes, enhancing decision-making capabilities.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.